Skip to main content
Log in

Multi-robot collaboration for robust exploration

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a new sensing modality for multirobot exploration. The approach is based on using a pair of robots that observe each other, and act in concert to reduce odometry errors. We assume the robots can both directly sense nearby obstacles and see each other. The proposed approach improves the quality of the map by reducing the inaccuracies that occur over time from dead reckoning errors. Furthermore, by exploiting the ability of the robots to see each other, we can detect opaque obstacles in the environment independently of their surface reflectance properties. Two different algorithms, based on the size of the environment, are introduced, with a complexity analysis, and experimental results in simulation and with real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Andreas, Constructing maps for mobile robot navigation based on ultrasonic range data, IEEE Trans. Syst. Man Cybernet. Part B 26(2) (1996) 233-242.

    Article  Google Scholar 

  2. R.C. Arkin and T. Balch, Motor schema-based formation control for multiagent robot teams, in: International Conference on Multiagent Systems, San Francisco, CA (1995) pp. 10-16.

  3. I.A. Bachelder and A.M. Waxman, A view-based neurocomputational system for relational mapmaking and navigation in visual environments, Robotics Autonom. Syst. 16 (1995) 267-289.

    Article  Google Scholar 

  4. T. Balch and R.C. Arkin, Communication in reactive multiagent robotic systems, Autonom. Robots 1(1) (1994) 27-52.

    Article  Google Scholar 

  5. R. Bauer and W.D. Rencken, Sonar feature based exploration, in: IEEE International Conference on Intelligent Robots and Systems, Vol. 1 (IEEE, 1995) pp. 148-153.

    Google Scholar 

  6. M. Betke and L. Gurvits, Mobile robot localization using landmarks, IEEE Trans. Robotics Autom. 13(2) (1997) 251-263.

    Article  Google Scholar 

  7. D.L. Boley, E.S. Steinmetz and K. Sutherland, Robot localization from landmarks using recursive total least squares, in: Proc. IEEE Conference on Robotics and Automation, Minneapolis, MN, April 1996 (IEEE Computer Society Press, 1996) pp. 1381-1386.

  8. J. Borenstein, The clapper: a dual-drive mobile robot with internal correction of dead-reckoning errors, in: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA (May 8-13, 1994) pp. 3085-3090.

  9. J. Borenstein, H.R. Everett, L. Feng and D. Wehe, Mobile robot positioning: sensors and techniques, J. Robotic Syst. 14(4) (1997) 231-249.

    Article  Google Scholar 

  10. S.M. Bozic, Digital and Kalman Filtering (Edward Arnold, 2nd edition, 1994).

  11. R.A. Brooks, Visual map making for a mobile robot, IEEE Trans. Robotics Autom. (1985) 824-829.

  12. H. Bulata and M. Devy, Incremental construction of a landmark-based and topological model of indoor environments by a mobile robot, in: Proc. IEEE Conference on Robotics and Automation (April 1996) pp. 1054-1060.

  13. H. Choset, Incremental construction of the generalized voronoi diagram, THE GENERALIZED VORONOI GRAPH AND the HIERARCHICAL generalized Voronoi graph, in: CGC Workshop on Computational Geometry, Baltimore, MD (October 1997).

  14. H. Choset and P. Pignon, Coverage path planning: The boustrophedon cellular decomposition, in: International Conference on Field and Service Robotics, Canberra, Australia (1997).

  15. W.W. Cohen, Adaptive mapping and navigation by teams of simple robots, Robotics Autonom. Syst. 18(4) (1996) 411-434.

    Article  Google Scholar 

  16. A. Curran and K.J. Kyriakopoulos, Sensor-based self-localization for wheeled mobile robots, J. Robotic Syst. 12(3) (1995) 163-176.

    MATH  Google Scholar 

  17. X. Deng and A. Mirzaian, Competitive robot mapping with homogeneous markers, IEEE Trans. Robotics Autom. 12(4) (1996) 532-542.

    Article  Google Scholar 

  18. B.R. Donald, J. Jennings and D. Rus, Analyzing teams of cooperating mobile robots, in: Proceedings of IEEE International Conference on Robotics and Automation, Vol. 3 (IEEE, 1994) pp. 130-135.

    Google Scholar 

  19. G. Dudek, P. Freedman and S. Hadjres, Using local information in a non-local way for mapping graph-like worlds, in: Proceedings of the 3th International Conference on Artificial Intelligence, Chambery, France (1993) pp. 1639-1645.

  20. G. Dudek, P. Freedman and S. Hadjres, Mapping in unknown graph-like worlds, J. Robotic Syst. 13(8) (1996) 539-559.

    Article  MATH  Google Scholar 

  21. G. Dudek, P. Freedman and I.M. Rekleitis, Just-in-time sensing: efficiently combining sonar and laser range data for exploring unknown worlds, in: International Conference in Robotics and Automation, Vol. 1 (IEEE, 1996) pp. 667-671.

    Google Scholar 

  22. G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics (Cambridge University Press 2000).

  23. G. Dudek, M. Jenkin, E. Milios and D. Wilkes, Robotic exploration as graph construction, IEEE Trans. Robotics Automation 7(6) (1991) 859-865.

    Article  Google Scholar 

  24. G. Dudek, M. Jenkin, E. Milios and D. Wilkes, Experiments in sensing and communication for robot convoy navigation, in: Proceedings IEEE International Conference on Intelligent Robots and Systems (IROS), Vol. 2, Pittsburgh, PA (August 1995) pp. 268-273.

    Google Scholar 

  25. G. Dudek, M. Jenkin, E. Milios and D. Wilkes, A taxonomy for multiagent robotics, Autonom. Robots 3 (1996) 375-397.

    Google Scholar 

  26. G. Dudek and C. Zhang, Vision-based robot localization without explicit object models, in: Proc. International Conference of Robotics and Automation, Minneapolis, MN (IEEE Press, 1996).

  27. A. Elfes, Sonar-based real-world mapping and navigation, IEEE J. Robotics Autom. 3(3) (1987) 249-265.

    Google Scholar 

  28. D. Eu and G. Toussaint, On approximating polygonal curves in two and three dimensions, CVGIP: Graphical Models and Image Processing 56(3) (1994) 231-246.

    Article  Google Scholar 

  29. T. Fujii, H. Asama, T. von Numers, T. Fujita, H. Kaetsu and I. Endo, Co-evolution of a multiple autonomous robot system and its working environment via intelligent local information storage, Robotics Autonom. Syst. 19(1) (1996) 1-13.

    Article  Google Scholar 

  30. T. Fukuda, S. Ito, F. Arai, Y. Yokoyama, Y. Abe, K. Tanaka and Y. Tanaka, Navigation system based on ceiling landmark recognition for autonomous mobile robot-landmark detection based on fuzzy template matching (ftm), in: IEEE International Conference on Intelligent Robots and Systems, Vol. 2 (1995) pp. 150-155.

    Google Scholar 

  31. A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, MA, 1974).

    Google Scholar 

  32. F. Giuffrida, C. Massucco, P. Morasso, G. Vercelli and R. Zaccaria, Multi-level navigation using active localization system, in: IEEE International Conference on Intelligent Robots and Systems, Vol. 1 (IEEE, 1995) pp. 413-418.

    Google Scholar 

  33. S. Hert and V. Lumelsky, The ties that bind: Motion planning for multiple tethered robots, Robotics Autom. Syst. 17 (1996) 187-215.

    Article  Google Scholar 

  34. H. Imai and M. Iri, Polygonal approximations of a curve-formulations and algorithms, in: Computational Morphology, ed. G.T. Toussaint (Elsevier Science, New York, 1988) pp. 71-86.

    Google Scholar 

  35. D. Kang, H. Hashimoto and F. Harashima, Position estimation for mobile robot using sensor fusion, in: IEEE International Conference on Intelligent Robots and Systems, Vol. 1 (IEEE, 1995) pp. 271-276.

    Google Scholar 

  36. J. Kleinberg, On-line search in a simple polygon, in: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (1994) pp. 8-15.

  37. S. Koenig and R.G. Simmons, Unsupervised learning of probabilistic models for robot navigation, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 1996) pp. 2301-2308.

  38. B. Kuipers and T. Levitt, Navigation and mapping in large-scale space, AI Magazine (1988).

  39. R. Kurazume, S. Hirose, S. Nagata and N. Sashida, Study on cooperative positioning system, in: International Conference in Robotics and Automation, Vol. 2 (IEEE, 1996) pp. 1421-1426.

    Google Scholar 

  40. R. Kurazume and S. Nagata, Cooperative positioning with multiple robots, in: International Conference in Robotics and Automation, Vol. 2 (IEEE, 1994) pp. 1250-1257.

    Google Scholar 

  41. S. Lang and A. Wong, Building geometric world models with graph synthesis for sensor fusion in mobile robots, Comput. Intelligence 6 (1990) 91-107.

    Google Scholar 

  42. J.J. Leonard and H.F. Durrant-Whyte, Mobile robot localization by tracking geometric beacons, IEEE Trans. Robotics Autom. 7(3) (1991) 376-382.

    Article  Google Scholar 

  43. C. Lin and R. Tummala, Mobile robot navigation using artificial landmarks, J. Robotic Systems 14(2) (1997) 93-106.

    Article  Google Scholar 

  44. F. Lu and E. Milios, Globally consistent range scan alignment for environment mapping, Autonom. Robots 4 (1997) 333-349.

    Article  Google Scholar 

  45. F. Lu and E. Milios, Robot pose estimation in unknown environments by matching 2d range scans, J. Intell. Robotics Syst. (1998).

  46. V. Lumelsky, S. Mukhopadhyay and K. Sun, Sensor-based terrain acquisition: The 'sightseer' strategy, in: Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, Vol. 2, IEEE Service Center, Piscataway, NJ (IEEE, 1989) pp. 1157-1161.

    Google Scholar 

  47. V. Lumelsky, S. Mukopadhyay and K. Sun, Dynamic path planning in sensor-based terrain acquisition, IEEE Trans. Robotics Autom. 6(4) (1990) 462-472.

    Article  Google Scholar 

  48. P. MacKenzie and G. Dudek, Precise positioning using model-based maps, in: Proceedings of the International Conference on Robotics and Automation, San Diego, CA (IEEE Press, 1994).

  49. M.J. Mataric, M. Nilsson and K.T. Simsarian, Cooperative multi-robot box-pushing, in: IEEE International Conference on Intelligent Robots and Systems, Vol. 3 (IEEE, 1995) pp. 556-561.

    Google Scholar 

  50. F. Nashashibi and M. Devy, Combining terrain maps and polyhedral models for robot navigation, in: 1993 International Conference on Intelligent Robots and Systems (July 1993) pp. 685-691.

  51. B. Oommen, S. Iyegar, S. Nageswara, S. Rao and R. Kashyap, Robot navigation in unknown terrains using learned visibility graphs, Part I: The disjoint convex obstacle case, IEEE J. Robotics Autom. 3(6) (1987) 672-681.

    Article  Google Scholar 

  52. J. O'Rourke, Computational Geometry in C (Cambridge University Press, Cambridge, 1994).

    MATH  Google Scholar 

  53. D. Pierce and B. Kuipers, Learning to explore and build maps, in: Proceedings of the National Conference on Artificial Intelligence, Vol. 2, Menlo Park, CA (AAAI, 1994) pp. 1264-1271.

    Google Scholar 

  54. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction (Springer-Verlag, New York, 1985).

    Google Scholar 

  55. N.S.V. Rao, V. Protopopescu and N. Manickam, Cooperative terrain model acquisition by a team of two or three point-robots, in: International Conference in Robotics and Automation, Vol. 2 (IEEE, 1996) pp. 1427-1433.

    Google Scholar 

  56. N.S.V. Rao, Robot navigation in unknown generalized polygonal terrains using vision sensors, IEEE Trans. Syst. Man Cybern. 25(6) (1995) 947-962.

    Article  Google Scholar 

  57. I. Rekleitis, G. Dudek and E. Milios, Multi-robot exploration of an unknown environment, efficiently reducing the odometry error, in: International Joint Conference in Artificial Intelligence (IJCAI), Vol. 2, Nagoya, Japan, August 1997 (Morgan Kaufmann, San Mateo, CA, 1997) pp. 1340-1345.

    Google Scholar 

  58. I.M. Rekleitis, G. Dudek and E.E. Milios, Accurate mapping of an unknown world and online landmark positioning, in: Proceedings of Vision Interface 1998, Vancouver, Canada (June 1998) pp. 455-461.

  59. R. Sim and G. Dudek, Learning visual landmarks for pose estimation, in: Proc. of Int. Conf. on Robotics and Automation (ICRA) (May 1999).

  60. R. Smith and P. Cheeseman, On the representation and estimation of spatial uncertainty, Internat. J. Robotics Res. 5(4) (1986) 56-68.

    Google Scholar 

  61. R. Smith, M. Self and P. Cheeseman, Estimating uncertain spatial relationships in robotics, in: Autonomous Robot Vehicles, eds. I.J. Cox and G. T. Wilfong (Springer-Verlag, 1990) pp. 167-193.

  62. K. Sugihara and I. Suzuki, Distributed algorithms for formation of geometric patterns with many mobile robots, J. Robotics Syst. 13(3) (1996) 127-139.

    Article  MATH  Google Scholar 

  63. S. Thrun, Learning metric-topological maps for indoor mobile robot navigation, AI Journal 99(1) (1998) 21-71.

    MATH  Google Scholar 

  64. S. Thrun, D. Fox and W. Burgard, A probabilistic approach to concurrent mapping and localization for mobile robots, Machine Learning Autonomous Robots 31(5) (1998) 29-53; 253-271.

    MATH  Google Scholar 

  65. T. von Numers, H. Asama, T. Fujita, S. Kotosaka, S. Muyao, H. Kaetsu and I. Endo, An intelligent data carrier system for local communication between cooperative multiple mobile robots and environment, in: 2nd IFAC Conf. on Inteligent Autonomous Vehicles'95 (1995) pp. 366-370.

  66. A. Walker, H. Hallman and D. Willshaw, Bee-havior in a mobile robot: The construction of a self-organized cognitive map and its use in robot navigation within a complex, natural environment, in: IEEE Conf. on Neural Networks (1993) pp. 1451-1456.

  67. P. Weckesser, R. Dillmann, M. Elbs, S. Hampel and U. Rembold, Multiple sensorprocessing for high-precision navigation and environmental modeling with a mobile robot, in: IEEE International Conference on Intelligent Robots and Systems, Vol. 1 (IEEE, 1995) pp. 453-458.

    Google Scholar 

  68. G. Weiss, C. Wetzler and E. von Puttkamer, Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans, in: IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Vol. 1 (IEEE, 1994) pp. 595-601.

    Google Scholar 

  69. X. Yun, G. Alptekin and Okay Albayrak, Line and circle formation of distributed physical mobile robots, J. Robotic Syst. 14(2) (1997) 63-76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekleitis, I., Dudek, G. & Milios, E. Multi-robot collaboration for robust exploration. Annals of Mathematics and Artificial Intelligence 31, 7–40 (2001). https://doi.org/10.1023/A:1016636024246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016636024246

Navigation