Skip to main content
Log in

Training neural networks with noisy data as an ill-posed problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of network approximation in the framework of approximation and regularization theory. It is shown that training neural networks and similar network approximation techniques are equivalent to least-squares collocation for a corresponding integral equation with mollified data.

Results about convergence and convergence rates for exact data are derived based upon well-known convergence results about least-squares collocation. Finally, the stability properties with respect to errors in the data are examined and stability bounds are obtained, which yield rules for the choice of the number of network elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Amato and D.T. Vuza, Besov regularization, thresholding and wavelets for smoothing data, Numer. Funct. Anal. Optim. 18(1997) 461–493.

    Google Scholar 

  2. K.E. Atkinson and I.H. Sloan, The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs, Math. Comp. 56(1991) 119–139.

    Google Scholar 

  3. A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39(1993) 930–945.

    Google Scholar 

  4. C.M. Bishop, Neural Networks for Pattern Recognition (Clarendon Press, Oxford, 1995).

    Google Scholar 

  5. C.M. Bishop, Regularization and complexity control in feed-forward networks, EC2 & Cie(1995) 141–148.

  6. M. Burger and A. Neubauer, Error bounds for approximation with neural networks, submitted.

  7. C.K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden layer, J. Approx. Theory 70(1992) 131–141.

    Google Scholar 

  8. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  9. H.W. Engl, Regularization by least-squares collocation, in: Numerical Treatment of Inverse Problems in Differential and Integral Equations, eds. P. Deuflhard and E. Hairer (Birkhäuser, Boston, 1983) pp. 345–354.

    Google Scholar 

  10. H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).

    Google Scholar 

  11. H.G. Feichtinger and T. Strohmer, eds., Gabor Analysis and Applications (Birkhäuser, Boston, 1998).

    Google Scholar 

  12. W. Freeden and F. Schneider, Regularization wavelets and multiresolution, Inverse Problems 14 (1998) 225–243.

    Google Scholar 

  13. F. Girosi and G. Anzellotti, Convergence rates of approximation by translates, AI Memo 1288, AI Laboratory, MIT, Cambridge, MA (1995).

    Google Scholar 

  14. F. Girosi and T. Poggio, A theory of networks for approximation and learning, AI Memo 1140, AI Laboratory, MIT, Cambridge, MA (1989).

    Google Scholar 

  15. F. Girosi and T. Poggio, Networks and the best approximation property, Biol. Cybern. 63(1990) 169–176.

    Google Scholar 

  16. F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7(1995) 219–269.

    Google Scholar 

  17. C.W. Groetsch, Generalized inverses and generalized splines, Numer. Funct. Anal. Optim. 2(1980) 93–97.

    Google Scholar 

  18. W. Hackbusch, Integral Equations (Birkhäuser, Basel, 1995).

    Google Scholar 

  19. M. Hanke and O. Scherzer, Numerical differentiation as an example for inverse problems, Preprint 98/16, University Karlsruhe (1998).

  20. M. Hegland and R.S. Anderssen, A mollification framework for improperly posed problems, Numer. Math. 78(1998) 549–575.

    Google Scholar 

  21. K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2(1989) 359–366.

    Google Scholar 

  22. R. Kress, Linear Integral Equations, 2nd edition (Springer, New York, 1999).

    Google Scholar 

  23. A.K. Louis, Inverse und Schlecht Gestellte Probleme (Teubner, Stuttgart, 1989).

    Google Scholar 

  24. A.K. Louis and P. Maaß, Smoothed projection methods for the moment problem, Numer. Math. 59 (1991) 277–294.

    Google Scholar 

  25. A.K. Louis, Approximate inverse for linear and some nonlinear problems, Inverse Problems 12(1996) 175–190.

    Google Scholar 

  26. Y. Makovoz, Uniform approximation by neural networks, J. Approx. Theory 95(1998) 215–228.

    Google Scholar 

  27. Y. Meyer, Wavelets. Algorithms and Applications (SIAM, Philadelphia, PA, 1993).

    Google Scholar 

  28. D.A. Murio, The Mollification Method and the Numerical Solution of Ill-posed Problems (Wiley, New York, 1993).

    Google Scholar 

  29. H.N. Mhaskar and C.A. Micchelli, Degree of approximation by neural and translation networks with a single hidden layer, Adv. Appl. Math. 16(1995) 151–183.

    Google Scholar 

  30. I.T. Nabney, Efficient training of RBF networks for classification, NCRG Technical Report 99/02 (1999).

  31. M.Z. Nashed and G. Wahba, Convergence rates of approximate least squares solutions to linear integral and operator equations of the first kind, Math. Comp. 28(1974) 69–80.

    Google Scholar 

  32. F. Natterer, Regularisierung schlecht gestellter Probleme durch Projektionsverfahren, Numer. Math. 28(1977) 329-341.

    Google Scholar 

  33. P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10(1999) 51–80.

    Google Scholar 

  34. A. Sard, Approximations based on nonscalar observations, J. Approx. Theory 8(1973) 315–334.

    Google Scholar 

  35. J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P.Y. Glorennec, H. Hjalmarsson and A. Juditsky, Nonlinear black-box modeling in system identification: A unified overview, Automatica 31 (1995) 1691–1724.

    Google Scholar 

  36. A.N. Tikhonov and V.Y. Arsenin, Solutions of Inverse Problems (Wiley, New York, 1977).

    Google Scholar 

  37. G. Wahba, Convergence rates of certain approximate solutions to fredholm integral equations of the first kind, J. Approx. Theory 7(1973) 167–185.

    Google Scholar 

  38. G. Wahba, A class of approximate solutions to linear operator equations, J. Approx. Theory 9(1973) 61–77.

    Google Scholar 

  39. Y. Xu and Y. Zhao, Quadratures for boundary integral equations of the first kind with logarithmic kernels, J. Integral Equations Appl. 8(1996) 239–268.

    Google Scholar 

  40. P. Yee and S. Haykin, Pattern classification as an ill-posed, inverse problem: a regularization approach, in: Proc. ICASSP-93 (Minneapolis, 1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, M., Engl, H.W. Training neural networks with noisy data as an ill-posed problem. Advances in Computational Mathematics 13, 335–354 (2000). https://doi.org/10.1023/A:1016641629556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016641629556

Navigation