Skip to main content
Log in

Distributed problem solving in social insects

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In a social insect colony, large numbers of individuals all follow the same set of behavioral rules. Without centralized control, these individuals' interactions with each other and with their environment result in the allocation of individuals to various tasks, and in the distribution of foragers among available food sources. We review this highly parallel and distributed form of information processing, discussing its potential sophistication, its actual performance in various groups of social insects, its general strengths and liabilities, and finally, the adaptations that compensate for these liabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Anderson and F.L.W. Ratnieks, Worker allocation in insect societies: coordination of nectar foragers and nectar receivers in honey bee (Apis mellifera) colonies, Behav. Ecol. Sociobiol. 46 (1999) 73-81.

    Article  Google Scholar 

  2. C. Anderson and F.L.W. Ratnieks, Task partitioning in foraging: general principles, efficiency and information reliability of queueing delays, in: Information Processing in Social Insects, eds. C. Detrain, J.-L. Deneubourg and J.M. Pasteels (Birkhäuser, Basel, 1999) pp. 31-50.

    Google Scholar 

  3. C. Anderson and F.L.W. Ratnieks, Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency, Amer. Natur. 154 (1999) 521-535.

    Article  Google Scholar 

  4. C. Baroni-Urbani and M.G. Nielsen, Energetics and foraging behaviour of the European seed harvesting ant Messor capitatus II. Do ants optimise their harvesting? Physiol. Entom. 15 (1990) 449-461.

    Article  Google Scholar 

  5. J.J. Bartholdi, T.D. Seeley, C.A. Tovey and J.H.V. Vate, The pattern and effectiveness of forager allocation among flower patches by honey bee colonies, J. Theor. Biol. 160 (1993) 23-40.

    Article  Google Scholar 

  6. R. Beckers, J.L. Deneubourg and S. Goss, Trail laying behaviour during food recruitment in the ant Lasius niger (L.), Insect. Soc. 39 (1992) 59-72.

    Article  Google Scholar 

  7. R. Beckers, J.L. Deneubourg, S. Goss and J.M. Pasteels, Collective decision making through food recruitment, Insect. Soc. 37 (1990) 258-267.

    Article  Google Scholar 

  8. J.C.d. Biseau, M. Schuiten, J.-M. Pasteels and J.-L. Deneubourg, Respective contributions of leader and trail during recruitment to food in Tetramorium bicarinatum (Hymenoptera: Formicidae), Insect. Soc. 41 (1994) 241-254.

    Article  Google Scholar 

  9. E. Bonabeau, G. Theraulaz and J.L. Deneubourg, Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies, Proc. Roy. Soc. Ser. B 263 (1996) 1565-1569.

    Google Scholar 

  10. E. Bonabeau, G. Theraulaz and J.-L. Deneubourg, Group and mass recruitment in ant colonies: the influence of contact rates, J. Theor. Biol. 195 (1998) 157-166.

    Article  Google Scholar 

  11. M.D. Breed, J.H. Fewell, A.J. Moore and K.R. Williams, Graded recruitment in a Ponerine ant, Behav. Ecol. Sociobiol. 20 (1987) 407-411.

    Article  Google Scholar 

  12. N.F. Britton, T.R. Strickland and N.R. Franks, Analysis of ant foraging algorithms, J. Biol. Syst. 6 (1998).

  13. V. Calenbuhr and J.L. Deneubourg, A model of osmotropotactic orientation I, J. Theor. Biol. 158 (1992) 359-393.

    Article  Google Scholar 

  14. S. Camazine and J. Sneyd, A model of collective nectar source selection by honey bees: self-organization through simple rules, J. Theor. Biol. 149 (1991) 547-571.

    Article  Google Scholar 

  15. E.L. Charnov, Optimal foraging: the marginal value theorem, Theor. Population Biol. 9 (1976) 129-136.

    Article  MATH  Google Scholar 

  16. D.L. Crawford and S.W. Rissing, Regulation of recruitment by individual scouts in Formica oreas Wheeler (Hymenoptera, Formicidae), Insect. Soc. 30 (1983) 177-183.

    Article  Google Scholar 

  17. J.L. Deneubourg, S. Aron, S. Goss, J. Pasteels and G. Duerinck, Random behavior, amplification processes, and number of participants: how they contribute to the foraging properties of ants, Phys. D 22 (1986).

  18. J.L. Deneubourg, J.M. Pasteels and J.C. Verhaeghe, Probabilistic behavior in ants: a strategy of errors? J. Theor. Biol. 105 (1983) 259-271.

    Article  Google Scholar 

  19. C. Detrain, J.-L. Deneubourg and J.M. Pasteels, Decision-making in foraging by social insects, in: Information Processing in Social Insects, eds. C. Detrain, J.-L. Deneubourg and J.M. Pasteels (Birkhäuser, Basel, 1999) pp. 331-354.

    Google Scholar 

  20. H.A. Downing and R.L. Jeane, Nest construction by the paper wasp Polistes: A test of stigmergy theory, J. Anim. Behav. 36 (1988) 1729-1739.

    Google Scholar 

  21. H. Dreisig, Ideal free distributions of nectar foraging bumblebees, Oikos 72 (1995) 161-172.

    Google Scholar 

  22. K.v. Frisch, The Dance Language and Orientation of Bees (Harvard University Press, Cambridge, 1967).

    Google Scholar 

  23. D.M. Gordon, The organization of work in social insect colonies, Nature 380 (1996) 121-124.

    Article  Google Scholar 

  24. D.M. Gordon, R.E.H. Paul and K. Thorpe, What is the function of encounter patterns in ant colonies? Anim. Behav. 45 (1993) 1083-1100.

    Article  Google Scholar 

  25. J.B.S. Haldane and H. Spurway, A statistical analysis of communication in Apis mellifera and a comparison with communication in other animals, Insect. Soc. 1 (1954) 247-283.

    Article  Google Scholar 

  26. W. Hangartner, Structure and variability of the individual odor trail in Solenopsis geminata Fabr. (Hymenopetera, Formicidae), Z. Vergl. Physiol. 62 (1969) 111-120.

    Article  Google Scholar 

  27. R.L. Jeanne, The organization of work in Polybia occidentalis: the costs and benefits of specialization in a social wasp, Behav. Ecol. Sociobiol. 19 (1986) 333-341.

    Article  Google Scholar 

  28. R.L. Jeanne, Do water foragers pace nest construction activity, in Polybia occidentalis? in: From Individual to Collective Behavior in Social Insects, eds. J.M. Pasteels and J.L. Deneubourg (Birkhäuser, Basel, 1987) pp. 241-251.

    Google Scholar 

  29. R.L. Jeanne, Regulation of nest construction behaviour in Polybia occidentalis, Anim. Behav. 52 (1996) 473-488.

    Article  Google Scholar 

  30. R.L. Jeanne, Group size, productivity, and information flow in social wasps, in: Information Processing in Social Insects, eds. C. Detrain, J.-L. Deneubourg and J.M. Pasteels (Birkhäuser, Basel, 1999) pp. 3-30.

    Google Scholar 

  31. W.F. Kirchner and M. Lindauer, The causes of the tremble dance of the honeybee, Apis mellifera, Behav. Ecol. Sociobiol. 35 (1994) 303-308.

    Article  Google Scholar 

  32. M. Lachmann and G. Sella, The computationally complete ant colony: Global coordination in a system without hierarchy, in: Advances in Artificial Life, Proceedings of European Conference on Artificial Life 1995 (Springer, 1995).

  33. M. Lachmann and G. Sella, The computationally complete ant colony: A framework for the study of functional organization (in preparation).

  34. W.S. McCulloch and W. Pitts, A logical calculus of ideas immanent in nervous activity, Bull. Math. Biophys. 5 (1943) 115-133.

    MATH  MathSciNet  Google Scholar 

  35. C. Moore, Generalized shifts: predictability and unpredictability in dynamical systems, Non Linearity 4 (1991) 199-230.

    MATH  Google Scholar 

  36. S.C. Nicolis and J.L. Deneubourg, Emerging patterns and food recruitment in ants: An analytical study, J. Theor. Biol. 198 (1999) 575-592.

    Article  Google Scholar 

  37. P. Nonacs, Death in the distance: mortality risk as information for foraging ants, Behaviour 112 (1990) 23-35.

    Google Scholar 

  38. P. Nonacs and L.M. Dill, Foraging response of the ant Lasius pallitarsis to food sources with associated mortality risk, Insect. Soc. 35 (1988) 293-303.

    Article  Google Scholar 

  39. P. Nonacs and L.M. Dill, Mortality risk versus food quality trade-offs in a common currency: the ant-patch preferences, Ecology 71 (1990) 1886-1892.

    Article  Google Scholar 

  40. J. Nuñez, Honeybee foraging strategies at food source in relation to its distance form the hive and the rate of sugar flow, J. Apic Res. 21 (1982) 139-150.

    Google Scholar 

  41. S.W. Pacala, D.M. Gordon and H.C.J. Godfray, Effects of social group size on information transfer and task allocation, Evol. Ecol. 10 (1996) 127-165.

    Article  Google Scholar 

  42. G.A. Parker and R.A. Stuart, Animal behaviour as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds, Amer. Natur. 110 (1976) 1055-1076.

    Article  Google Scholar 

  43. J.M. Pasteels and J.L. Deneubourg (eds.), From Individual to Collective Behavior in Social Insects (Birkhäuser, Basel, 1987).

    Google Scholar 

  44. H. Pereira and D.M. Gordon, Task allocation in ants (in preparation).

  45. F.L.W. Ratnieks and C. Anderson, Task partitioning in insect societies. II. Use of queueing delay information in recruitment, Amer. Natur. 154 (1999) 536-548.

    Article  Google Scholar 

  46. G.E. Robinson, Regulation of division of labor in insect societies, Ann. Rev. Ecol. Systematics 37 (1992) 637-665.

    Google Scholar 

  47. P. Schmid-Hempel, A. Kacelnik and A.I. Houston, Honeybees maximize efficiency by not filing their crop, Behav. Ecol. Sociobiol. 17 (1985) 61-66.

    Article  Google Scholar 

  48. T.D. Seeley, Social foraging in honey bees: how nectar foragers assess their colony's nutritional status, Behav. Ecol. Sociobiol. 24 (1992) 181-199.

    Article  Google Scholar 

  49. T.D. Seeley, Honey bee colonies are group-level adaptive units, Amer. Natur. 150 (1997) 22-41.

    Article  Google Scholar 

  50. T.D. Seeley, S. Camazine and J. Sneyd, Collective decision-making in honey bees: how colonies choose among nectar sources, Behav. Ecol. Sociobiol. 28 (1991) 277-290.

    Article  Google Scholar 

  51. T.D. Seeley and C.A. Tovey, Why search time to find a food-storer bee accurately indicates the relative rates of nectar collecting and nectar processing in honey bee colonies, Anim. Behav. 47 (1994) 311-316.

    Article  Google Scholar 

  52. S. Smale, On the differential equations of species in competition, J. Math. Biol. 3 (1976) 5-7.

    Article  MATH  MathSciNet  Google Scholar 

  53. D.W. Stephens and J.R. Krebs, Foraging Theory (Princeton University Press, Princeton, NJ, 1986).

    Google Scholar 

  54. T.R. Strickland, N.F. Britton and N.R. Franks, Models of information flow in ant foraging: the benefits of both attractive and repulsive signals, in: Information Processing in Social Insects, eds. C. Detrain, J.-L. Deneubourg and J.M. Pasteels (Birkhäuser, Basel, 1999) pp. 83-100.

    Google Scholar 

  55. R. Szelp and T. Jacobi, The mechanism of recruitment to mass foraging in colonies of Monomoium venustum Smith, M. subopacum ssp phoenicium E.M., Tapinoma isrealis For. and T. simothi v. phoenicium Em., Insect. Soc. 14 (1967) 25-40.

    Article  Google Scholar 

  56. F. Taylor, Foraging behavior of ants: theoretical considerations, J. Theor. Biol. 71 (1978) 541-565.

    Article  Google Scholar 

  57. G. Theraulaz and E. Bonabeau, Modelling the collective building of complex architectures in social insects with lattice swarms, J. Theor. Biol. 177 (1995) 381-400.

    Article  Google Scholar 

  58. G. Theraulaz, E. Bonabeau and J.L. Deneubourg, The origin of nest complexity in social insects, Complexity 3 (1998) 15-25.

    Article  Google Scholar 

  59. G. Theraulaz, E. Bonabeau and J.-L. Deneubourg, The mechanisms and rules of coordinated building in social insects, in: Information Processing in Social Insects, eds. C. Detrain, J.-L. Deneubourg and J.M. Pasteels (Birkhäuser, Basel, 1999).

    Google Scholar 

  60. J.F.A. Traniello, Foraging strategies of ants, A Rev. Entomol. 34 (1989) 191-210.

    Article  Google Scholar 

  61. J.-C. Verhaeghe and J.-L. Deneubourg, Experimental study and modelling of food recruitment in the ant Tetramorium impurum (Hym. form), Insect. Soc. 30 (1983) 347-360.

    Article  Google Scholar 

  62. E.O. Wilson, Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith). I: Organization of mass foraging, Anim. Behav. 10 (1962) 134-164.

    Article  Google Scholar 

  63. E.O. Wilson, Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) II: An information analysis of the odour trail, Anim. Behav. 10 (1962) 148-158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsh, A.E., Gordon, D.M. Distributed problem solving in social insects. Annals of Mathematics and Artificial Intelligence 31, 199–221 (2001). https://doi.org/10.1023/A:1016651613285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016651613285

Keywords

Navigation