Skip to main content
Log in

A symmetry exploiting Lanczos method for symmetric Toeplitz matrices

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Several methods for computing the smallest eigenvalues of a symmetric and positive definite Toeplitz matrix T have been studied in the literature. Most of them share the disadvantage that they do not reflect symmetry properties of the corresponding eigenvector. In this note we present a Lanczos method which approximates simultaneously the odd and the even spectrum of T at the same cost as the classical Lanczos approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Ammar and W.B. Gragg, Numerical experience with a superfast real Toeplitz solver, Linear Algebra Appl. 121 (1989) 185–206.

    Google Scholar 

  2. A.L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151–162.

    Google Scholar 

  3. A. Cantoni and P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976) 275–288.

    Google Scholar 

  4. G. Cybenko and C. Van Loan, Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Statist. Comput. 7 (1986) 123–131.

    Google Scholar 

  5. P. Delsarte and Y. Genin, Spectral properties of finite Toeplitz matrices, in: Mathematical Theory of Networks and Systems, Proc. of the MTNS-83 Internat. Symposium, ed. P.A. Fuhrmann (Springer, Berlin 1984) pp. 194–213.

    Google Scholar 

  6. P. Delsarte and Y. Genin, The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Processing 34 (1986) 470–478.

    Google Scholar 

  7. J.W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, PA, 1997).

    Google Scholar 

  8. T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. Comp. 35 (1980) 1251–1268.

    Google Scholar 

  9. I.C. Gohberg and A.A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogs, Mat. Issled. 2 (1972) 201–223.

    Google Scholar 

  10. G. Heinig, P. Jankowski and K. Rost, Fast inversion algorithms of Toeplitz-plus-Hankel matrices, Numer. Math. 52 (1988) 665–682.

    Google Scholar 

  11. Y.H. Hu and S.-Y. Kung, Toeplitz eigensystem solver, IEEE Trans. Acoustics Speech Signal Processing 33 (1985) 1264–1271.

    Google Scholar 

  12. D. Huang, Symmetric solutions and eigenvalue problems of Toeplitz systems, IEEE Trans. Signal Processing 40 (1992) 3069–3074.

    Google Scholar 

  13. T. Huckle, Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix with spectral transformation Lanczos method, in: Numerical Treatment of Eigenvalue Problems, Vol. 5, eds. J. Albrecht, L. Collatz, P. Hagedorn and W. Velte (Birkhäuser, Basel, 1991) pp. 109–115.

    Google Scholar 

  14. T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrices, SIAM J. Matrix Anal. Appl. 13 (1992) 767–777.

    Google Scholar 

  15. N. Levinson, The Wiener RMS (root-mean-square) error criterion in filter design and prediction, J. Math. Phys. 25 (1947) 261–278.

    Google Scholar 

  16. W. Mackens and H. Voss, The minimum eigenvalue of a symmetric positive definite Toeplitz matrix and rational Hermitian interpolation, SIAM J. Matrix Anal. Appl. 18 (1997) 521–534.

    Google Scholar 

  17. W. Mackens and H. Voss, A projection method for computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix, Linear Algebra Appl. 275–276 (1998) 401–415.

    Google Scholar 

  18. A. Melman, Spectral functions for real symmetric Toeplitz matrices, J. Comput. Appl. Math. 98 (1998) 233–243.

    Google Scholar 

  19. A. Melman, Bounds on the extreme eigenvalues of real symmetric Toeplitz matrices, SIAM J. Matrix Anal. Appl. 21 (1999) 362–378.

    Google Scholar 

  20. F. Noor and S.D. Morgera, Recursive and iterative algorithms for computing eigenvalues of Hermitian Toeplitz matrices, IEEE Trans. Signal Process. 41 (1993) 1272–1280.

    Google Scholar 

  21. V.F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J. R. Astr. Soc. 33 (1973) 347–366.

    Google Scholar 

  22. W.F. Trench, An algorithm for the inversion of finite Toeplitz matrices, SIAM J. Appl. Math. 12 (1964) 515–522.

    Google Scholar 

  23. W.F. Trench, Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices, SIAM J. Matrix Anal. Appl. 10 (1989) 135–146.

    Google Scholar 

  24. W.F. Trench, Numerical solution of the eigenvalue problem for efficiently structured Hermitian matrices, Linear Algebra Appl. 154–156 (1991) 415–432.

    Google Scholar 

  25. W.F. Trench, Interlacement of the even and odd spectra of real symmetric Toeplitz matrices, Linear Algebra Appl. 195 (1993) 59–68.

    Google Scholar 

  26. H. Voss, Symmetric schemes for computing the minimal eigenvalue of a symmetric Toeplitz matrix, Linear Algebra Appl. 287 (1999) 359–371.

    Google Scholar 

  27. H. Voss, Bounds for the minimum eigenvalue of a symmetric Toeplitz matrix, Electron. Trans. Numer. Anal. 8 (1999) 127–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voss, H. A symmetry exploiting Lanczos method for symmetric Toeplitz matrices. Numerical Algorithms 25, 377–385 (2000). https://doi.org/10.1023/A:1016665225002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016665225002

Navigation