Skip to main content
Log in

Parameter Learning in Object-Oriented Bayesian Networks

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper describes a method for parameter learning in Object-Oriented Bayesian Networks (OOBNs). We propose a methodology for learning parameters in OOBNs, and prove that maintaining the object orientation imposed by the prior model will increase the learning speed in object-oriented domains. We also propose a method to efficiently estimate the probability parameters in domains that are not strictly object oriented. Finally, we attack type uncertainty, a special case of model uncertainty typical to object-oriented domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abe, M.K. Warmuth and J. Takeuchi, Polynomial learnability of probabilistic concepts with respect to the Kullback-Leibler divergence, in: Proceedings of the 4th Annual Workshop on Computational Learning Theory (COLT 1991) (Morgan Kaufmann, San Mateo, CA, 1991) pp. 277-289.

    Google Scholar 

  2. O. Bangsø, H. Langseth and T.D. Nielsen, Structural learning in object oriented domains, in: Proceedings of the 14th International Florida Artificial Intelligence Research Society Conference (FLAIRS-2001) (AAAI Press, 2001) pp. 340-344.

  3. O. Bangsø and P.-H. Wuillemin, Object oriented Bayesian networks. A framework for topdown specification of large Bayesian networks with repetitive structures, Technical Report CIT-87.2-00-obphw1, Department of Computer Science, Aalborg University (2000). 242 H. Langseth, O. Bangsø / Parameter learning in OOBNs

  4. O. Bangsø and P.-H. Wuillemin, Top-down construction and repetitive structures representation in Bayesian networks, in: Proceedings of the 13th International Florida Artificial Intelligence Research Society Conference, eds. J. Etheredge and B. Manaris (AAAI Press, 2000) pp. 282-286.

  5. R. Bellazzi and A. Riva, Learning conditional probabilities with longitudinal data, in: Working Notes of the IJCAI Workshop Building Probabilistic Networks: Where Do the Numbers Come from? (AAAI Press, Montreal, 1995) pp. 7-15.

    Google Scholar 

  6. J. Binder, D. Koller, S. Russell and K. Kanazawa, Adaptive probabilistic networks with hidden variables, Machine Learning 29 (1997) 213-244.

    Google Scholar 

  7. J. Cheng and R. Greiner, Comparing Bayesian network classifiers, in: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI'99, eds. K.B. Laskey and H. Prade (Morgan Kaufmann, Stocholm, 1999) pp. 101-108.

    Google Scholar 

  8. T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).

    Google Scholar 

  9. R.G. Cowell, A.P. Dawid, S.L. Lauritzen and D.J. Spiegelhalter, Probabilistic Networks and Expert Systems, Statistics for Engineering and Information Sciences (Springer, New York, 1999).

    Google Scholar 

  10. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, NJ, 1946).

    Google Scholar 

  11. S. Dasgupta, The sample complexity of learning fixed-structure Bayesian networks, Machine Learning 29(2-3) (1997) 165-180.

    Google Scholar 

  12. A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39 (1977) 1-38.

    Google Scholar 

  13. N. Friedman, D. Geiger and M. Goldszmidt, Bayesian network classifiers, Machine Learning 29 (1997) 131-163.

    Google Scholar 

  14. N. Friedman and Z. Yakhini, On the sample complexity of learning Bayesian networks, in: Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence (UAI-96) (Morgan Kaufmann, San Francisco, CA, 1996) pp. 274-282.

    Google Scholar 

  15. D. Geiger and D. Heckerman, Knowledge representation and inference in similarity networks and Bayesian multinets, Artificial Intelligence 82 (1996) 45-74.

    Google Scholar 

  16. P.J. Green, On use of the EM algorithm for penalized likelihood estimation, Journal of the Royal Statistical Society 52(3) (1990) 443-452.

    Google Scholar 

  17. D. Heckerman, A tutorial on learning with Bayesian networks, in: Learning in Graphical Models, ed. M.I. Jordan (MIT Press, Cambridge, MA, 1999).

    Google Scholar 

  18. D. Heckerman, D. Geiger and D.M. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data, Machine Learning 20 (1995) 197-243. Also available as Microsoft Research Technical Report MSR-TR-94-09.

    Google Scholar 

  19. D.F. Heitjan and S. Basu, Distinguishing “Missing At Random” and “Missing Completely At Random”, The American Statistician 50(3) (1996) 207-213.

    Google Scholar 

  20. J. Hoeting, D. Madigan, A. Raftery and C.T. Volinsky, Bayesian model averaging: A tutorial (with discussion), Statistical Science 14(4) (1999) 382-417. Corrected version at http://www.stat.washington. edu/www/research/online/hoetingl999.pdf.

    Google Scholar 

  21. F.V. Jensen, An Introduction to Bayesian Networks (Taylor and Francis, London, UK, 1996).

    Google Scholar 

  22. D. Koller and A. Pfeffer, Object-oriented Bayesian networks, in: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, eds. D. Geiger and P.P. Shenoy (Morgan Kaufmann, San Francisco, 1997) pp. 302-313.

    Google Scholar 

  23. W. Lam and F. Bacchus, Learning Bayesian belief networks: An approach based on the MDL principle, Computational Intelligence 10(4) (1994) 269-293.

    Google Scholar 

  24. H. Langseth, Efficient parameter learning: Empiric comparison of large sample behaviour, Department of Computer Science, Aalborg University (2000). Available at http://www.cs.auc.dk/research/DSS/publications.

  25. K.B. Laskey and S.M. Mahoney, Network fragments: Representing knowledge for constructing probabilistic models, in: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, eds. D. Geiger and P. Shenoy, (Morgan Kaufmann Publishers, San Francisco, CA, 1997) pp. 334-341.

    Google Scholar 

  26. S.L. Lauritzen, The EM-algorithm for graphical association models with missing data, Computational Statistics and Data Analysis 19 (1995) 191-201.

    Google Scholar 

  27. E.L. Lehmann, Elements of Large-Sample Theory, Springer Texts in Statistics (Springer, New York, 1999).

    Google Scholar 

  28. R.J.A. Little and D.B. Rubin, Statistical Analysis with Missing Data (Wiley, New York, 1987).

    Google Scholar 

  29. D. Madigan, J. Gavrin and A. Raftery, Eliciting prior information to enhance the predictive performance of Bayesian graphical models, Communication in Statistics-Theory and Methods 24 (1995) 2271-2292.

    Google Scholar 

  30. D. Madigan and A. Raftery, Model selection and accounting for model uncertainty in grahical models using Occam' window, Journal of American Statistical Association 89 (1994) 1535-1546.

    Google Scholar 

  31. L. Ortiz and L. Kaelbling, Accelerating EM: An empirical study, in: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99) (Morgan Kaufmann, San Francisco, CA, 1999) pp. 512-521.

    Google Scholar 

  32. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Mateo, CA, 1988).

    Google Scholar 

  33. A.J. Pfeffer, Probabilistic reasoning for complex systems, Ph.D. thesis, Stanford University (2000).

  34. M. Pradhan, G. Provan, B. Middleton and M. Henrion, Knowledge engineering for large belief networks, in: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann, San Francisco, CA, 1994) pp. 484-490.

    Google Scholar 

  35. G. Schwarz, Estimating the dimension of a model, Annals of Statistics 6 (1978) 461-464.

    Google Scholar 

  36. D.J. Spiegelhalter and S.L. Lauritzen, Sequential updating of conditional probabilities on directed graphical structures, Networks 20 (1990) 579-605.

    Google Scholar 

  37. S. Srinivas, A probabilistic approach to hierarchical model-based diagnosis, in: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann, San Francisco, CA, 1994) pp. 538-545.

    Google Scholar 

  38. B. Thiesson, Accelerating quantification of Bayesian networks with incomplete data, in: Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (AAAI Press, Menlo Park, CA, 1995) pp. 306-311.

    Google Scholar 

  39. R.A. van Engelen, Approximating Bayesian belief networks by arc removal, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(8) (1997) 916-920.

    Google Scholar 

  40. J. Whittaker, Graphical Models in Applied Multivariate Statistics (Wiley, Chichester, 1990).

    Google Scholar 

  41. Y. Xiang and F.V. Jensen, Inference in multiply sectioned Bayesian networks with extended Shafer-Shenoy and lazy propagation, in: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI'99, eds. K.B. Laskey and H. Prade (Morgan Kaufmann, Stocholm, 1999) pp. 680-687.

    Google Scholar 

  42. Y. Xiang, D. Poole and M.P. Beddoes, Multiply sectioned Bayesian networks and junction forests for large knowledge-based systems, Computational Intelligence 9(2) (1993) 171-220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langseth, H., Bangsø, O. Parameter Learning in Object-Oriented Bayesian Networks. Annals of Mathematics and Artificial Intelligence 32, 221–243 (2001). https://doi.org/10.1023/A:1016769618900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016769618900

Navigation