Skip to main content
Log in

The exponent of discrepancy of sparse grids is at least 2.1933

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We study bounds on the exponents of sparse grids for L 2‐discrepancy and average case d‐dimensional integration with respect to the Wiener sheet measure. Our main result is that the minimal exponent of sparse grids for these problems is bounded from below by 2.1933. This shows that sparse grids provide a rather poor exponent since, due to Wasilkowski and Woźniakowski [16], the minimal exponent of L 2‐discrepancy of arbitrary point sets is at most 1.4778. The proof of the latter, however, is non‐constructive. The best known constructive upper bound is still obtained by a particular sparse grid and equal to 2.4526....

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms 18 (1998) 209-232.

    Article  MATH  MathSciNet  Google Scholar 

  3. F.J. Hickernell and H. Wo´zniakowski, Integration and approximation in arbitrary dimensions, Adv. Comput. Math. (1999), this issue.

  4. H.H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, Vol. 463 (Springer, 1975).

  5. D. Lee, Approximation of linear operators on a Wiener space, Rocky Mountain J. Math. 16 (1986) 641-659.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Matoušek, The exponent of discrepancy is at least 1:0669, J. Complexity 14 (1998) 448-453.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  8. E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996) 79-97.

    Article  MATH  MathSciNet  Google Scholar 

  9. I.H. Sloan and S. Joe, Lattice Methods for Multiple Integration (Oxford University Press, 1994).

  10. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet. Math. Dokl. 4 (1963) 240-243.

    Google Scholar 

  11. A. Steinbauer, Quadrature formulas for the Wiener measure, J. Complexity 15 (1999) to appear.

  12. S. Tezuka, Uniform Random Numbers: Theory and Practice (Kluver, Dordrecht, 1995).

    MATH  Google Scholar 

  13. J.F. Traub, G.W. Wasilkowski and H. Wo´zniakowski, Information-based Complexity (Academic Press, New York, 1988).

    MATH  Google Scholar 

  14. J.F. Traub, and A.G. Werschulz, Complexity and Information (Cambridge University Press, 1998).

  15. G.W. Wasilkowski and H. Wo´zniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11 (1995) 1-56.

    Article  MATH  MathSciNet  Google Scholar 

  16. G.W. Wasilkowski and H. Wo´zniakowski, The exponent of discrepancy is at most 1:4778..., Math. Comp. 66 (1997) 1125-1132.

    Article  MATH  MathSciNet  Google Scholar 

  17. G.W. Wasilkowski and H. Wo´zniakowski, Weighted tensor product algorithms for linear multivariate problems, J. Complexity (2000) to appear.

  18. H. Wo´zniakowski, Average case complexity of multivariate integration, Bull. Amer. Math. Soc. (N.S.) 24 (1991) 185-194.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaskota, L. The exponent of discrepancy of sparse grids is at least 2.1933. Advances in Computational Mathematics 12, 3–24 (2000). https://doi.org/10.1023/A:1018900715321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018900715321

Navigation