Skip to main content
Log in

Asymptotic convergence of degree‐raising

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is well known that the degree‐raised Bernstein–Bézier coefficients of degree n of a polynomial g converge to g at the rate 1/n. In this paper we consider the polynomial A n(g) of degree ⩼ n interpolating the coefficients. We show how A n can be viewed as an inverse to the Bernstein polynomial operator and that the derivatives A n(g)(r) converge uniformly to g(r) at the rate 1/n for all r. We also give an asymptotic expansion of Voronovskaya type for A n(g) and discuss some shape preserving properties of this polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bernstein, Complètement à l'article de E. Voronovskaya, C. R. Acad. Sci. URSS (1932) 86-92.

  2. E. Cohen and L.L. Schumaker, Rates of convergence of control polygons, Comput. Aided Geom. Design 2 (1985) 229-235.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. de Boor, A Practical Guide to Splines(Springer, New York, 1978).

    Google Scholar 

  4. R.A. DeVore and G.G. Lorentz, Constructive Approximation(Springer, Berlin, 1993).

    Google Scholar 

  5. G. Farin, Curves and Surfaces for Computer Aided Geometric Design(Academic Press, San Diego, 1988).

    Google Scholar 

  6. T.N.T. Goodman, Shape preserving representations, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L.L. Schumaker (Academic Press, New York, 1989) pp. 333-357.

    Google Scholar 

  7. Y. Kageyama, Generalization of the left Bernstein quasi-interpolants, J. Approx. Theory 94 (1998) 306-329.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.G. Lorentz, Bernstein Polynomials(Toronto, Canada, 1953).

  9. M. Neamtu, Subdividing multivariate polynomials over simplices in Bernstein-Bézier form without de Casteljau algorithm, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, Boston, 1991) pp. 359-362.

    Google Scholar 

  10. M. Neamtu, Multivariate splines, Dissertation, University of Twente (1991).

  11. H. Prautzsch and L. Kobbelt, Convergence of subdivision and degree elevation, Adv. Comput. Math. 2 (1994) 143-154.

    MATH  MathSciNet  Google Scholar 

  12. P. Sablonnière, A family of Bernstein quasi-interpolants on [0, 1]_, Approx. Theory Appl. 8 (1992) 62-76.

    MATH  MathSciNet  Google Scholar 

  13. P. Sablonnière, Discrete Bézier curves and surfaces, in: Mathematical Methods in Computer Aided Geometric Design II, eds. T. Lyche and L.L. Schumaker (Academic Press, Boston, 1992) pp. 497-515.

    Google Scholar 

  14. P. Sablonnière, Representation of quasi-interpolants as differential operators and applications, Publication LANS 79 (I.N.S.A. Rennes, 1998).

  15. W. Trump and H. Prautzsch, Arbitrarily high degree elevation of Bézier representations, Comput. Aided Geom. Design 13 (1996) 387-398.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Voronovskaya, Détermination de la forme asymptotique d'approximation des fonctions par les polynómes de M. Bernstein, Dokl. Akad. Nauk (1932) 79-85.

  17. W. Zhengchang, Norm of the Bernstein left quasi-interpolant operator, J. Approx. Theory 66 (1991) 35-43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floater, M.S., Lyche, T. Asymptotic convergence of degree‐raising. Advances in Computational Mathematics 12, 175–187 (2000). https://doi.org/10.1023/A:1018913118047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018913118047

Navigation