Skip to main content
Log in

Remarks on the optimal convolution kernel for CSOR waveform relaxation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The convolution SOR waveform relaxation method is a numerical method for solving large-scale systems of ordinary differential equations on parallel computers. It is similar in spirit to the SOR acceleration method for solving linear systems of algebraic equations, but replaces the multiplication with an overrelaxation parameter by a convolution with a time-dependent overrelaxation function. Its convergence depends strongly on the particular choice of this function. In this paper, an analytic expression is presented for the optimal continuous-time convolution kernel and its relation to the optimal kernel for the discrete-time iteration is derived. We investigate whether this analytic expression can be used in actual computations. Also, the validity of the formulae that are currently used to determine the optimal continuous-time and discrete-time kernels is extended towards a larger class of ODE systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1970).

    Google Scholar 

  2. A. Bellen, Z. Jackiewicz and M. Zennaro, Contractivity of waveform relaxation Runge-Kutta iterations and related limit methods for dissipative systems in the maximum norm, SIAM J. Numer. Anal. 31(2) (1994) 499–523.

    Google Scholar 

  3. A. Bellen and M. Zennaro, The use of Runge-Kutta formulae in waveform relaxation methods, Appl. Numer. Math. 11 (1993) 95–114.

    Google Scholar 

  4. R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill Kogakusha, Ltd., Tokyo, 2nd ed., 1978).

    Google Scholar 

  5. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer Series in Computational Mathematics 14 (Springer, Berlin, 1991).

    Google Scholar 

  6. G. Horton, S. Vandewalle and P. Worley, An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput. 16(3) (1995) 531–541.

    Google Scholar 

  7. M. Hu, K. Jackson and B. Zhu, Complex optimal SOR parameters and convergence regions, Working Notes, Department of Computer Science, University of Toronto, Canada (1995).

    Google Scholar 

  8. J. Janssen and S. Vandewalle, On SOR waveform relaxation methods, Technical Report CRPC-95-4, Center for Research on Parallel Computation, California Institute of Technology, Pasadena, California, USA (October 1995); also: SIAM J. Numer. Anal., to appear.

    Google Scholar 

  9. J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite-element meshes: The continuous-time case, SIAM J. Numer. Anal. 33(2) (1996) 456–474.

    Google Scholar 

  10. J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite-element meshes: The discrete-time case, SIAM J. Sci. Comput. 17(1) (1996) 133–155.

    Google Scholar 

  11. C. Lubich, Chebyshev acceleration of Picard-Lindelöf iteration, BIT 32 (1992) 535–538.

    Google Scholar 

  12. C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT 27 (1987) 216–234.

    Google Scholar 

  13. A. Lumsdaine, Theoretical and practical aspects of parallel numerical algorithms for initial values problems, with applications, Ph.D. thesis, Deptartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (1992).

    Google Scholar 

  14. U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value problems, SIAM J. Sci. Statist. Comput. 8(4) (1987) 459–482.

    Google Scholar 

  15. U. Miekkala and O. Nevanlinna, Sets of convergence and stability regions, BIT 27 (1987) 554–584.

    Google Scholar 

  16. A. D. Poularakis and S. Seely, Elements of Signals and Systems, PWS-Kent Series in Electrical Engineering (PWS-Kent Publishing Company, Boston, 1988).

    Google Scholar 

  17. S. Reed and B. Simon, Functional Analysis, Methods of Modern Mathematical Physics 1 (Academic Press, New York, 1972).

    Google Scholar 

  18. M. W. Reichelt, Accelerated waveform relaxation techniques for the parallel transient simulation of semiconductor devices, Ph.D. thesis, Deptartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (1993).

    Google Scholar 

  19. M. W. Reichelt, J. K. White and J. Allen, Optimal convolution SOR acceleration of waveform relaxation with application to parallel simulation of semiconductor devices, SIAM J. Sci. Comput. 16(5) (1995) 1137–1158.

    Google Scholar 

  20. R. Skeel, Waveform iteration and the shifted Picard splitting, SIAM J. Sci. Statist. Comput. 10(4) (1989) 756–776.

    Google Scholar 

  21. S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems (Teubner, Stuttgart, 1993).

    Google Scholar 

  22. S. Vandewalle and E. Van de Velde, Space-time concurrent multigrid waveform relaxation, Ann. Numer. Math. 1 (1994) 347–363.

    Google Scholar 

  23. D. M. Young, Iterative Solution of Large Linear Systems (Academic Press, New York, 1971).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Jackson, K., Janssen, J. et al. Remarks on the optimal convolution kernel for CSOR waveform relaxation. Advances in Computational Mathematics 7, 135–156 (1997). https://doi.org/10.1023/A:1018938617680

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018938617680

Navigation