Skip to main content
Log in

Global solutions for nonlinear systems using qualitative reasoning

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper explores how qualitative information can be used to improve the performance of global optimization procedures. Specifically, we have constructed a nonlinear parameter estimation reasoner (NPER) for finding parameter values that match an ordinary differential equation (ODE) model to observed data. Qualitative reasoning is used within the NPER, for instance, to intelligently choose starting values for the unknown parameters and to empirically determine when the system appears to be chaotic. This enables odrpack, the nonlinear least-squares solver that lies at the heart of this NPER, to avoid terminating at local extrema in the regression landscape. odrpack is uniquely suited to this task because of its efficiency and stability. The NPER's robustness is demonstrated via a Monte Carlo analysis of simulated examples drawn from across the domain of dynamics, including systems that are nonlinear, chaotic, and noisy. It is shown to locate solutions for noisy, incomplete real-world sensor data from radio-controlled cars used in the University of British Columbia's soccer-playing robot project. The parameter estimation scheme described in this paper is a component of pret, an implemented computer program that uses a variety of artificial intelligence techniques to automate system identification— the process of inferring an internal ODE model from external observations of a system — a routine and difficult problem faced by engineers from various disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D.I. Abarbanel, Analysis of Observed Chaotic Data(Springer, Berlin, 1995).

    Google Scholar 

  2. K.J. Astrom and P. Eykhoff, System identification–a survey, Automatica 7 (1971) 123–167.

    Article  MathSciNet  Google Scholar 

  3. D.G. Bobrow, ed., Qualitative Reasoning about Physical Systems(MIT Press, Cambridge, MA, 1985).

  4. P.T. Boggs, R.H. Byrd, J.E. Rogers and R.B. Schnabel, User’s reference guide for ODRPACK–software for weighted orthogonal distance regression, Internal Report 89-4103, National Institute of Standards and Technology, Gaithersburg, MD (1991).

    Google Scholar 

  5. P.T. Boggs, R.H. Byrd and R.B. Schnabel, A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM Journal of Scientific and Statistical Computing 8(6) (1987) 1052–1078.

    Article  MATH  MathSciNet  Google Scholar 

  6. P.T. Boggs, J.W. Tolle and A.J. Kearsley, A practical algorithm for general large scale nonlinear optimization problems, Technical Report 5704, National Institute of Standards and Technology, Gaithersburg, MD (1996). Submitted to SIAM Journal on Optimization.

    Google Scholar 

  7. E. Bradley, Automatic construction of accurate models of physical systems, in: Proceedings of the 8th International Workshop on Qualitative Reasoning about Physical Systems, Nara, Japan (1994).

  8. E. Bradley and M. Easley, Reasoning about sensor data for automated system identification, in: Proceedings of the 2nd International Symposium on Intelligent Data Analysis (IDA-97)(1997).

  9. E. Bradley, M. Easley and A. Hogan, Qualitative observer theory, in preparation.

  10. E. Bradley and R. Stolle, Automatic construction of accurate models of physical systems, Annals of Mathematics and Artificial Intelligence 17 (1996) 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  11. A.C. Capelo, L. Ironi and S. Tentoni, The need for qualitative reasoning in automated modeling: A case study, in: Proceedings of the 10th Internattional Workshop on Qualitative Reasoning, eds. Y. Iwasaki and A. Farquhar (Stanford Sierra Camp, CA, 1996) pp. 32–39.

    Google Scholar 

  12. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt, Maple V Language Reference Manual(Springer, New York, 1991).

    Google Scholar 

  13. J.E. Dennis, D.M. Gay and R.E. Welsch, An adaptive nonlinear least-squares algorithm, ACM Transactions on Mathematical Software 7(3) (1981) 348–368.

    Article  MATH  Google Scholar 

  14. J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations(Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  15. A. Farquhar and G. Brajnik, A semi-quantitative physics compiler, in: Proceedings of the 8th International Workshop on Qualitative Reasoning about Physical Systems, Nara, Japan (1994).

  16. R. Fletcher, Practical Methods of Optimization(Wiley, New York, 2nd ed., 1987).

    Google Scholar 

  17. K.D. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85–168.

    Article  Google Scholar 

  18. K.D. Forbus, The qualitative process engine, in: Readings in Qualitative Reasoning About Physical Systems, eds. D.S. Weld and J. de Kleer (Morgan Kaufmann, San Mateo, CA, 1990).

    Google Scholar 

  19. P.E. Gill, W. Murray and M.H. Wright, Practical Optimization(Academic Press, Boston, 1981).

    Google Scholar 

  20. R. Horst, P. Pardalos and N. Thoai, Introduction to Global Optimization, Nonconvex Optimization and its Applications, Vol. 3 (Kluwer Academic, Dordrecht, 1995).

    Google Scholar 

  21. E. Hung, Parameter estimation in chaotic systems, Technical Report AIM 1541, MIT Artificial Intelligence Lab (May 1995).

  22. J.-N. Juang, Applied System Identification(Prentice-Hall, Englewood Cliffs, NJ, 1994).

    Google Scholar 

  23. R.E. Kalman, A new approach to filtering and prediction problems, J. Basic Engrg. 82D (1960) 35–45.

    Google Scholar 

  24. P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow, eds., Scientific Discovery: Computational Explorations of the Creative Process(MIT Press, Cambridge, MA, 1987).

    Google Scholar 

  25. L. Ljung, ed., System Identification: Theory for the User(Prentice-Hall, Englewood Cliffs, NJ, 1987).

  26. J.J. Moré, D.C. Sorensen, K.E. Hillstrom and B.S. Garbow, in: Sources and Development of Mathematical Software, ed. W.J. Cowell (Prentice-Hall, Englewood Cliffs, NJ, 1984). Chapter “The MINPACK project”.

    Google Scholar 

  27. J. Rees and W. Clinger, The revised report on the algorithmic language Scheme, ACM SIGPLAN Notices 21 (1986) 37.

    Article  Google Scholar 

  28. L.F. Shampine and H.A. Watts, DEPAC–design of a user oriented package of ODE solvers, Technical Report SAND79-2374, Sandia National Laboratories (1979).

  29. D.L. Smith, Introduction to Dynamic System Modeling for Design(Prentice-Hall, Englewood Cliffs, NJ, 1994).

    Google Scholar 

  30. R.M. Stolle and E. Bradley, A customized logic paradigm for reasoning about models, in: Proceedings of the 10th International Workshop on Qualitative Reasoning about Physical Systems, Stanford Sierra Camp, CA (1996).

    Google Scholar 

  31. A. Torn and A. Zilinskas, Global Optimization, Lecture Notes in Computer Science 350 (Springer, Berlin, 1989).

    Google Scholar 

  32. B.C. Williams, A theory of interactions: Unifying qualitative and quantitative algebraic reasoning, Artificial Intelligence 51 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, E., O'Gallagher, A. & Rogers, J. Global solutions for nonlinear systems using qualitative reasoning. Annals of Mathematics and Artificial Intelligence 23, 211–288 (1998). https://doi.org/10.1023/A:1018972409754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018972409754

Keywords

Navigation