Skip to main content
Log in

Contrary‐to‐duty reasoning with preference‐based dyadic obligations

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this paper we introduce Prohairetic Deontic Logic (PDL), a preference‐based dyadic deontic logic. In our preference‐based interpretation of obligations “α should be (done) if β is (done)” is true if (1) no ¬α ∧ β state is as preferable as an α ∧ β state and (2) the preferred β states are α states. We show that this representation solves different problems of deontic logic. The first part of the definition is used to formalize contrary‐to‐duty reasoning, which, for example, occurs in Chisholm’s and Forrester’s notorious deontic paradoxes. The second part is used to make deontic dilemmas inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C.E. Alchourrón, Philosophical foundations of deontic logic and the logic of defeasible conditionals, in: Deontic Logic in Computer Science: Normative System Specification, eds. J.-J. Meyer and R. Wieringa (Wiley, Chichester, UK, 1993) pp. 43-84.

    Google Scholar 

  2. L. Åqvist, Good Samaritans, contrary-to-duty imperatives, and epistemic obligations, Noûs 1 (1967) 361-379.

    Article  Google Scholar 

  3. L. Åqvist, Systematic frame constraints in defeasible deontic logic, in: Defeasible Deontic Logic, ed. D. Nute, Synthese Library, Vol. 263 (Kluwer, Dordrecht, 1997) pp. 59-77.

    Google Scholar 

  4. C. Boutilier, Conditional logics of normality: a modal approach, Artificial Intelligence 68 (1994) 87-154.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Boutilier, Toward a logic for qualitative decision theory, in: Proceedings of the Fourth International Conference on Principles of Knowledge Representation and Reasoning (KR'94) (Morgan Kaufmann, San Francisco, CA, 1994) pp. 75-86.

    Google Scholar 

  6. A.L. Brown, S. Mantha and T. Wakayama, Exploiting the normative aspect of preference: a deontic logic without actions, Annals of Mathematics and Artificial Intelligence 9 (1993) 167-203.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Castañeda, The paradoxes of deontic logic: the simplest solution to all of them in one fell swoop, in: New Studies in Deontic Logic: Norms, Actions and the Foundations of Ethics, ed. R. Hilpinen (D. Reidel, 1981) pp. 37-85.

  8. B.F. Chellas, Modal Logic: An Introduction (Cambridge University Press, 1980).

  9. R.M. Chisholm, Contrary-to-duty imperatives and deontic logic, Analysis 24 (1963) 33-36.

    Article  Google Scholar 

  10. R. Conte and R. Falcone, ICMAS'96: Norms, obligations, and conventions, AI Magazine 18(4) (1997) 145-147.

    Google Scholar 

  11. D. Davidson, The logical form of action sentences, in: The Logic of Decision and Action, ed. N. Rescher (University of Pittsburg Press, 1967).

  12. B.S. Firozabadhi and L. van der Torre, Towards a formal analysis of control systems, in: Proceedings of the Thirteenth European Conference on Artificial Intelligence (ECAI'98), ed. H. Prade (1998) pp. 317-318.

  13. J.W. Forrester, Gentle murder, or the adverbial Samaritan, Journal of Philosophy 81 (1984) 193-197.

    Article  MathSciNet  Google Scholar 

  14. L. Goble, A logic of good, would and should, part 1, Journal of Philosophical Logic 19 (1990) 169-199.

    MATH  MathSciNet  Google Scholar 

  15. L. Goble, A logic of good, would and should, part 2, Journal of Philosophical Logic 19 (1990) 253-276.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Goble, Murder most gentle: the paradox deepens, Philosophical Studies 64 (1991) 217-227.

    Article  Google Scholar 

  17. L. Goble, “Ought” and extensionality, Noûs 30 (1996) 330-355.

    Article  MathSciNet  Google Scholar 

  18. V. Goranko and S. Passy, Using the universal modality: gains and questions, Journal of Logic and Computation 2 (1992) 5-30.

    MATH  MathSciNet  Google Scholar 

  19. B. Hansson, An analysis of some deontic logics, in: Deontic Logic: Introductionary and Systematic Readings, ed. R. Hilpinen (D. Reidel, Dordrecht, Holland, 1971) pp. 121-147. Reprint from Noûs 3 (1969) 373-398.

    Google Scholar 

  20. S.O. Hansson, A new semantical approach to the logic of preference, Erkenntnis 31 (1989) 1-42.

    Article  Google Scholar 

  21. S.O. Hansson, Defining “good” and “bad” in terms of “better”, Notre Dame Journal of Formal Logic 31 (1990) 136-149.

    Article  MATH  MathSciNet  Google Scholar 

  22. S.O. Hansson, Preference-based deontic logic (PDL), Journal of Philosophical Logic 19 (1990) 75-93.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.O. Hansson, Situationist deontic logic, Journal of Philosophical Logic 26 (1997) 423-448.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.F. Horty, Deontic logic as founded in nonmonotonic logic, Annals of Mathematics and Artificial Intelligence 9 (1993) 69-91.

    Article  MATH  MathSciNet  Google Scholar 

  25. Z. Huang and M. Masuch, The logic of permission and obligation in the framework of ALX3: how to avoid the paradoxes of deontic logic, Logique et Analyse (1997) 149.

  26. H.G. Hughes and M.J. Creswell, A Companion to Modal Logic (Methuen, London, 1984).

    Google Scholar 

  27. I.L. Humberstone, Inaccessible worlds, Notre Dame Journal of Formal Logic 24 (1983) 346-352.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Jackson, On the semantics and logic of obligation, Mind 94 (1985) 177-196.

    MathSciNet  Google Scholar 

  29. R. Jeffrey, The Logic of Decision (University of Chicago Press, 2nd edition, 1983).

  30. R.E. Jennings, A utilitarian semantics for deontic logic, Journal of Philosophical Logic 3 (1974) 445-465.

    Article  MATH  MathSciNet  Google Scholar 

  31. R.E. Jennings, Can there be a natural deontic logic? Synthese 65 (1985) 257-274.

    Article  MathSciNet  Google Scholar 

  32. A.J.I. Jones and M. Sergot, Deontic logic in the representation of law: Towards a methodology, Artificial Intelligence and Law 1 (1992) 45-64.

    Article  MATH  Google Scholar 

  33. A.J.I. Jones and M. Sergot, On the characterisation of law and computer systems: The normative systems perspective, in: Deontic Logic in Computer Science. Normative System Specification, eds. J. Meyer and R. Wieringa (Wiley, Chichester, UK, 1993) pp. 275-307.

    Google Scholar 

  34. S. Kraus, D. Lehmann and M. Magidor, Nonmonotonic reasoning, preferential models and cumulative logics, Artificial Intelligence 44 (1990) 167-207.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Lamarre, S4 as the conditional logic of nonmonotonicity, in: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR'91) (Morgan Kaufmann, 1991) pp. 357-367.

  36. J. Lang, Conditional desires and utilities — an alternative approach to qualitative decision theory, in: Proceedings of the 12th European Conference on Artificial Intelligence (ECAI'96) (1996) pp. 318-322.

  37. D. Lewis, Counterfactuals (Blackwell, Oxford, 1973).

    Google Scholar 

  38. D. Lewis, Semantic analysis for dyadic deontic logic, in: Logical Theory and Semantical Analysis, ed. S. Stunland (D. Reidel, Dordrecht, Holland, 1974) pp. 1-14.

    Google Scholar 

  39. B. Loewer and M. Belzer, Dyadic deontic detachment, Synthese 54 (1983) 295-318.

    Article  MATH  MathSciNet  Google Scholar 

  40. B. Loewer and M. Belzer, Help for the good Samaritan paradox, Philosophical Studies 50 (1986) 117-127.

    Article  MathSciNet  Google Scholar 

  41. D. Makinson, Five faces of minimality, Studia Logica 52 (1993) 339-379.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. Makinson, On a fundamental problem of deontic logic, in: Norms, Logics and Information Systems. New Studies on Deontic Logic and Computer Science, eds. P. McNamara and H. Prakken (IOS Press, 1999) pp. 29-54.

  43. D. Makinson and L. van der Torre, Input-output logics, in: Proceedings of the ΔEON-2000 (2000, to appear).

  44. L.T. McCarty, Defeasible deontic reasoning, Fundamenta Informaticae 21 (1994) 125-148.

    MATH  MathSciNet  Google Scholar 

  45. J.-J.Ch. Meyer, A different approach to deontic logic: deontic logic viewed as a variant of dynamic logic, Notre Dame Journal of Formal Logic 29 (1985) 109-136.

    Article  Google Scholar 

  46. J.D. Mullen, Does the logic of preference rest on a mistake? Metaphilosophy 10 (1979) 247-255.

    Google Scholar 

  47. D. Nute and X. Yu, Introduction, in: Defeasible Deontic Logic, ed. D. Nute, Synthese Library, Vol. 263 (Kluwer, Dordrecht, 1997) pp. 1-16.

    Google Scholar 

  48. J. Pearl, From conditional oughts to qualitative decision theory, in: Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI'93) (Morgan Kaufmann, 1993) pp. 12-20.

  49. H. Prakken and M.J. Sergot, Contrary-to-duty obligations, Studia Logica 57 (1996) 91-115.

    Article  MATH  MathSciNet  Google Scholar 

  50. H. Prakken and M.J. Sergot, Dyadic deontic logic and contrary-to-duty obligations, in: Defeasible Deontic Logic, ed. D. Nute, Synthese Library, Vol. 263 (Kluwer, 1997) pp. 223-262.

  51. Y. Moses R. Fagin, J.Y. Halpern and M.Y. Vardi, Reasoning About Knowledge (MIT Press, Cambridge, MA, 1995).

    Google Scholar 

  52. A. Ross, Imperatives and logic, Theoria 7 (1941) 53-71.

    Google Scholar 

  53. D. Ross, The Right and the Good (Oxford University Press, 1930).

  54. Y. Ryu and R. Lee, Defeasible deontic reasonig: A logic programming model, in: Deontic Logic in Computer Science: Normative System Specification (Wiley, Chichester, UK, 1993) pp. 225-241.

    Google Scholar 

  55. Y. Shoham, Reasoning About Change (MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  56. W. Sinnot-Armstrong, A solution to Forrester's paradox of gentle murder, Journal of Philosophy 82 (1985) 162-168.

    Article  Google Scholar 

  57. W. Spohn, An analysis of Hansson's dyadic deontic logic, Journal of Philosophical Logic 4 (1975) 237-252.

    Article  MATH  MathSciNet  Google Scholar 

  58. S. Tan and J. Pearl, Specification and evaluation of preferences under uncertainty, in: Proceedings of the Fourth International Conference on Principles of Knowledge Representation and Reasoning (KR'94) (Morgan Kaufmann, San Francisco, CA, 1994) pp. 530-539.

    Google Scholar 

  59. Y. Tan and L. van der Torre, How to combine ordering and minimizing in a deontic logic based on preferences, in: Deontic Logic, Agency and Normative Systems. Proceedings of the ΔEON'96, Workshops in Computing (Springer, 1996) pp. 216-232.

  60. R. Thomason and J.F. Horty, Nondeterministic action and dominance: foundations for planning and qualitative decision, in: Proceedings of the Conference on Theoretical Aspects of Reasoning about Agents (TARK'96) (Morgan Kaufmann, 1996) pp. 229-250.

  61. J.E. Tomberlin, Contrary-to-duty imperatives and conditional obligation, Noûs 16 (1981) 357-375.

    Article  MathSciNet  Google Scholar 

  62. D. Vakarelov, Modal characterization of the classes of finite and infinite quasi-ordered sets, in: Mathematical Logic, ed. P. Petkov (Plenum Press, New-York, 1990) pp. 373-387.

    Google Scholar 

  63. L. van der Torre, Violated obligations in a defeasible deontic logic, in: Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI'94) (Wiley, 1994) pp. 371-375.

  64. L. van der Torre, Reasoning about obligations: defeasibility in preference-based deontic logics, Ph.D. thesis, Erasmus University Rotterdam (1997).

  65. L. van der Torre, Labeled logics of conditional goals, in: Proceedings of the Thirteenth European Conference on Artificial Intelligence (ECAI'98), ed. H. Prade (1998) pp. 368-369.

  66. L. van der Torre, Phased labeled logics of conditional goals, in: Logics in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 1489 (Springer, 1998) pp. 92-106.

  67. L. van der Torre, Defeasible goals, in: Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Proceedings of the ECSQARU'99, Lecture Notes in Artificial Intelligence, Vol. 1638 (Springer, 1999) pp. 374-385.

  68. L. van der Torre, The logic of reusable propositional output with the fulfilment constraint, in: Labelled Deduction, eds. D. Basin et al., Applied Logic Series (Kluwer, 1999) pp. 247-268.

  69. L. van der Torre, Violation contexts and deontic independence, in: Modeling and Using Context, Lecture Notes in Artificial Intelligence, Vol. 1688 (Springer, 1999) pp. 361-374.

  70. L. van der Torre and Y. Tan, Cancelling and overshadowing: two types of defeasibility in defeasible deontic logic, in: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI'95) (Morgan Kaufman, 1995) pp. 1525-1532.

  71. L. van der Torre and Y. Tan, The many faces of defeasibility in defeasible deontic logic, in: Defeasible Deontic Logic, ed. D. Nute, Synthese Library, Vol. 263 (Kluwer, 1997) pp. 79-121.

  72. L. van der Torre and Y. Tan, Prohairetic Deontic Logic (PDL), in: Logics in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 1489 (Springer, 1998) pp. 77-91.

  73. L. van der Torre and Y. Tan, The temporal analysis of Chisholm's paradox, in: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI'98) (1998) pp. 650-655.

  74. L. van der Torre and Y. Tan, An update semantics for deontic reasoning, in: Norms, Logics and Information Systems. New Studies on Deontic Logic and Computer Science, eds. P. McNamara and H. Prakken (1998) pp. 73-90.

  75. L. van der Torre and Y. Tan, An update semantics for prima facie obligations, in: Proceedings of the Thirteenth European Conference on Artificial Intelligence (ECAI'98) ed. H. Prade (1998) pp. 38-42.

  76. L. van der Torre and Y. Tan, Contextual deontic logic: Violation contexts and factual defeasibility, in: Formal Aspects in Context, ed. M. Cavalcanti, Applied Logic Series (Kluwer, 1999).

  77. L. van der Torre and Y. Tan, Diagnosis and decision making in normative reasoning, Artificial Intelligence and Law 7 (1999) 51-67.

    Article  Google Scholar 

  78. L. van der Torre and Y. Tan, Rights, duties and commitments between agents, in: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI'99) (Morgan Kaufmann, 1999) pp. 1239-1244.

  79. L. van der Torre and Y. Tan, An update semantics for defeasible obligations, in: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI'99) (Morgan Kaufmann, 1999) pp. 631-638.

  80. L. van der Torre and E. Weydert, Parameters for utilitarian desires in a qualitative decision theory, Applied Intelligence (2000, to appear).

  81. J. van Eck, A system of temporally relative modal and deontic predicate logic and its philosophical application, Logique et Analyse 100 (1982) 249-381.

    MathSciNet  Google Scholar 

  82. B.C. van Fraassen, Values and the heart command, Journal of Philosophy 70 (1973) 5-19.

    Article  Google Scholar 

  83. G.H. von Wright, Deontic logic, Mind 60 (1951) 1-15.

    Google Scholar 

  84. G.H. von Wright, The Logic of Preference (Edinburgh University Press, 1963).

  85. G.H. von Wright, A new system of deontic logic, in: Deontic Logic: Introductory and Systematic Readings, ed. R. Hilpinen (D. Reidel, Dordrecht, Holland, 1971) pp. 105-120.

    Google Scholar 

  86. E. Weydert, Hyperrational conditionals. Monotonic reasoning about nested default conditionals, in: Foundations of Knowledge Representation and Reasoning, Lecture Notes in Artificial Intelligence, Vol. 810 (Springer, 1994) pp. 310-332.

  87. R.J. Wieringa and J.-J.Ch. Meyer, Applications of deontic logic in computer science: A concise overview, in: Deontic Logic in Computer Science: Normative System Specification, eds. J.-J. Meyer and R. Wieringa (Wiley, Chichester, UK, 1993) pp. 17-40.

    Google Scholar 

  88. X. Yu, Deontic logic with defeasible detachment, Ph.D. thesis, University of Georgia (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Torre, L., Tan, Y. Contrary‐to‐duty reasoning with preference‐based dyadic obligations. Annals of Mathematics and Artificial Intelligence 27, 49–78 (1999). https://doi.org/10.1023/A:1018975332469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018975332469

Keywords