Skip to main content
Log in

The method of fundamental solutions for elliptic boundary value problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to describe the development of the method of fundamental solutions (MFS) and related methods over the last three decades. Several applications of MFS-type methods are presented. Techniques by which such methods are extended to certain classes of non-trivial problems and adapted for the solution of inhomogeneous problems are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Aleksidze, On approximate solutions of a certain mixed boundary value problem in the theory of harmonic functions, Differential Equations 2 (1966) 515-518.

    MATH  Google Scholar 

  2. E. Almansi, Sull' integrazione dell' equazione differentiale Δ2n = 0, Annali di Mathematica Pura et Applicata, Series III, 2 (1897) 1-51.

    Google Scholar 

  3. K.E. Atkinson, The numerical evaluation of particular solutions for Poisson's equation, IMA J. Numer. Anal. 5 (1985) 319-338.

    MATH  MathSciNet  Google Scholar 

  4. P.K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering Science(McGraw-Hill, Maidenhead, 1981).

    MATH  Google Scholar 

  5. J.R. Berger and A. Karageorghis, The method of fundamental solutions for heat conduction in layered materials, preprint.

  6. J.R. Berger, J. Skilowitz and V.K. Tewary, Green's function for steady-state heat conduction in a bimaterial composite solid, preprint.

  7. A. Boag, Y. Leviatan and A. Boag, Analysis of acoustic scattering from fluid cylinders using a multifilament source model, J. Acoust. Soc. Amer. 83 (1988) 1-8.

    Article  Google Scholar 

  8. A. Boag, Y. Leviatan and A. Boag, Analysis of acoustic scattering from fluid bodies using a multipoint source model, IEEE Trans. Ultrason. Ferroelectrics and Frequency Control 36 (1989) 119-128.

    Article  Google Scholar 

  9. A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal. 22 (1985) 644-669.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech. 20 (1988) 111-157.

    Article  Google Scholar 

  11. G. Burgess and E. Mahajerin, Rotational fluid flow using a least squares collocation technique, Comput. & Fluids 12 (1984) 311-317.

    Article  MATH  Google Scholar 

  12. G. Burgess and E. Mahajerin, A comparison of the boundary element and superposition methods, Comput. & Structures 19 (1984) 697-705.

    Article  MATH  Google Scholar 

  13. G. Burgess and E. Mahajerin, An analytical contour integration method for handling body forces in elasticity, Appl. Math. Modelling 9 (1985) 27-32.

    Article  MATH  Google Scholar 

  14. G. Burgess and E. Mahajerin, The fundamental collocation method applied to the nonlinear Poisson equation in two dimensions, Comput. & Structures 27(1987) 763-767.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Cao, W.W. Schultz and R.F. Beck, Three-dimensional desingularized boundary integral methods for potential problems, Internat. J. Numer. Methods Fluids 12 (1991) 785-803.

    Article  MATH  MathSciNet  Google Scholar 

  16. B.C. Carlson, A table of elliptic integrals of the third kind, Math. Comp. 51 (1988) 267-280.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.E. Caruthers, private communication.

  18. J.E. Caruthers, J.C. French and G.K. Raviprakash, Green's function discretization for numerical solution of the Helmholtz equation, J. Sound Vibration 187 (1995) 553-568.

    Article  MathSciNet  Google Scholar 

  19. J.E. Caruthers, J.C. French and G.K. Raviprakash, Recent developments concerning a new discretization method for the Helmholtz equation, in: Proceedings of the First CEAS/AIAA Aeroacoustics Conference, June 1995, Munich, Germany, Vol. II (1995) pp. 819-826.

    Google Scholar 

  20. C.Y. Chan and C.S. Chen, Method of fundamental solutions for multi-dimensional quenching problems, Proceedings of Dynamic Systems and Applications 2 (1996) 115-122.

    MATH  MathSciNet  Google Scholar 

  21. C.S. Chen, The method of fundamental solutions for nonlinear thermal explosion, Comm. Numer. Methods Engrg. 11 (1995) 675-681.

    Article  MATH  MathSciNet  Google Scholar 

  22. C.S. Chen, The method of fundamental solutions and the quasi-Monte Carlo method for Poisson's equation, in: Lecture Notes in Statistics106, eds. H. Niederreiter and P. Shuie (Springer, New York, 1995) pp. 158-167.

    Google Scholar 

  23. C.S. Chen and M.A. Golberg, A domain embedding method and quasi-Monte Carlo method for Poisson's equation, in: BEM 17, eds. C.A. Brebbia, S. Kim, T.A. Osswald and H. Power (Computational Mechanics Publications, Southampton, 1995) pp. 115-122.

    Google Scholar 

  24. C.S. Chen and M.A. Golberg, Las Vegas method for diffusion equations, in: Boundary Element Technology XII, eds. J.I. Frankel, C.A. Brebbia and M.A.H. Aliabadi (Computational Mechanics Publications, Southampton, 1997) pp. 299-308.

    Google Scholar 

  25. R.S. Cheng, Delta-trigonometric and spline-trigonometric methods using the simple-layer potential representation, Ph.D. thesis, Applied Mathematics Department, University of Maryland (1987).

  26. S. Christiansen, On Kupradze's functional equations for plane harmonic problems, in: Function Theoretic Methods in Differential Equations, eds. R.P. Gilbert and R.J. Weinacht (Pitman, London, 1976) pp. 205-243.

    Google Scholar 

  27. D.L. Clements, Fundamental solutions for second order linear elliptic partial differential equations, in: Fundamental Solutions in Boundary Elements: Formulation and Integration, ed. F.G. Benitez (University of Sevilla, Sevilla, 1997) pp. 1-12.

    Google Scholar 

  28. T. D{ie91-01}broś, A singularity method for calculating hydrodynamic forces and particle velocities in low-Reynolds-number flows, J. Fluid. Mech. 156 (1986) 1-21.

    Google Scholar 

  29. G. De Mey, Integral equations for potential problems with the source function not located on the boundary, Comput. & Structures 8 (1978) 113-115.

    Article  MATH  Google Scholar 

  30. G. Fairweather and R.L. Johnston, The method of fundamental solutions for problems in potential theory, in: Treatment of Integral Equations by Numerical Methods, eds. C.T.H. Baker and G.F. Miller (Academic Press, London, 1982) pp. 349-359.

    Google Scholar 

  31. G. Fairweather, F.J. Rizzo, D.J. Shippy and Y.S. Wu, On the numerical solution of two-dimensional potential problems by an improved boundary integral equation method, J. Comput. Phys. 31 (1979) 96-112.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. Fichera, Linear elliptic equations of higher order in two independent variables and singular integral equations with applications to anisotropic inhomogeneous elasticity, in: Partial Differential Equations and Continuum Mechanics, ed. R.E. Langer (University of Wisconsin Press, Madison, 1961) pp. 55-80.

    Google Scholar 

  33. R.T. Fenner, Source field superposition analysis of two-dimensional potential problems, Internat. J. Numer. Methods Engrg. 32 (1991) 1079-1091.

    Article  MATH  Google Scholar 

  34. W. Freeden and H. Kersten, A constructive approximation theorem for the oblique derivative problem in potential theory, Math. Methods Appl. Sci. 3 (1981) 104-114.

    MATH  MathSciNet  Google Scholar 

  35. B.S. Garbow, K.E. Hillstrom and J.J. Moré, MINPACK Project, Argonne National Laboratory (1980).

  36. M.A. Golberg, The method of fundamental solutions for Poisson's equation, Engrg. Anal. Boundary Elem. 16 (1995) 205-213.

    Article  Google Scholar 

  37. M.A. Golberg, Recent developments in the numerical evaluation of particular solutions in the boundary element method, Appl. Math. Comput. 75 (1996) 91-101.

    Article  MATH  MathSciNet  Google Scholar 

  38. M.A. Golberg and C.S. Chen, The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations, Boundary Elements Comm. 5 (1994) 57-61.

    Google Scholar 

  39. M.A. Golberg and C.S. Chen, On a method of Atkinson for evaluating domain integrals in the boundary element method, Appl. Math. Comput. 60 (1994) 125-138.

    Article  MATH  MathSciNet  Google Scholar 

  40. M.A. Golberg, C.S. Chen and S.R. Karur, Improved multiquadratic approximation for partial differential equations, Engrg. Anal. Boundary Elem. 18 (1996) 9-17.

    Article  Google Scholar 

  41. G. Gospodinov and D. Ljutskanov, The boundary element method applied to plates, Appl. Math. Modelling 6 (1982) 237-244.

    Article  MATH  Google Scholar 

  42. A.K. Gupta, The boundary integral equation method for potential problems involving axisymmetric geometry and arbitrary boundary conditions, M.S. thesis, Department of Engineering Mechanics, University of Kentucky (1979).

  43. P.S. Han and M.D. Olson, An adaptive boundary element method, Internat. J. Numer. Methods Engrg. 24 (1987) 1187-1202.

    Article  MATH  Google Scholar 

  44. P.S. Han, M.D. Olson and R.L. Johnston, A Galerkin boundary element formulation with moving singularities, Engrg. Comput. 1 (1984) 232-236.

    Google Scholar 

  45. U. Heise, Numerical properties of integral equations in which the given boundary values and the sought solutions are defined on different curves, Comput. & Structures 8 (1978) 199-205.

    Article  MATH  MathSciNet  Google Scholar 

  46. U. Heise, Application of the singularity method for the formulation of plane elastostatical boundary value problems as integral equations, Acta Mechanica 31 (1978) 33-69.

    Article  MATH  MathSciNet  Google Scholar 

  47. I. Herrera, Boundary Methods: An Algebraic Theory(Pitman, London, 1984).

    MATH  Google Scholar 

  48. M.J. Hopper, ed., Harwell Subroutine Library Catalogue, Theoretical Physics Division, AERE, Harwell, UK (1973).

  49. S. Ho-Tai, R.L. Johnston and R. Mathon, Software for solving boundary value problems for Laplace's equation using fundamental solutions, Technical Report 136/79, Department of Computer Science, University of Toronto (1979).

  50. T. Inamuro, T. Saito and T. Adachi, A numerical analysis of unsteady separated flow by the discrete vortex method combined with the singularity method, Comput. & Structures 19 (1984) 75-84.

    Article  MATH  Google Scholar 

  51. M.A. Jaswon and G.T. Symm, Integral Equation Methods in Potential Theory and Elastostatics(Academic Press, New York, 1977).

    MATH  Google Scholar 

  52. D. Johnson, Plate bending by a boundary point method, Comput. & Structures 26 (1987) 673-680.

    Article  MATH  Google Scholar 

  53. R.L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl. Math. Modelling 8 (1984) 265-270.

    Article  MATH  Google Scholar 

  54. R.L. Johnston, G. Fairweather and P.S. Han, The method of fundamental solutions, an adaptive boundary element method, for problems in potential flow and solid mechanics, in: Proceedings of the 5th ASCE Specialty Conference(Engineering Mechanics Division, Laramie, WY, 1984) pp. 140-143.

    Google Scholar 

  55. R.L. Johnston, G. Fairweather and A. Karageorghis, An adaptive indirect boundary element methodt with applications, in: Boundary Elements VIII, Proceedings of the 8th International Conference, Tokyo, Japan, September 1986, Vol. II, eds. M. Tanaka and C. Brebbia (Springer, New York, 1987) pp. 587-598.

    Google Scholar 

  56. R.L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Internat. J. Numer. Methods Engrg. 14 (1979) 1739-1760.

    Article  Google Scholar 

  57. A. Karageorghis, Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary singularities, Numer. Methods Partial Differential Equations 8 (1992) 1-19.

    Article  MATH  MathSciNet  Google Scholar 

  58. A. Karageorghis, The method of fundamental solutions for the solution of steady-state free boundary problems, J. Comput. Phys. 98 (1992) 119-128.

    Article  MATH  Google Scholar 

  59. A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys. 69 (1987) 434-459.

    Article  MATH  MathSciNet  Google Scholar 

  60. A. Karageorghis and G. Fairweather, The Almansi method of fundamental solutions for solving biharmonic problems, Internat. J. Numer. Methods Engrg. 26 (1988) 1668-1682.

    Google Scholar 

  61. A. Karageorghis and G. Fairweather, The simple layer potential method of fundamental solutions for certain biharmonic problems, Internat. J. Numer. Methods Fluids 9 (1989) 1221-1234.

    Article  MATH  MathSciNet  Google Scholar 

  62. A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J. Numer. Anal. 9 (1989) 231-242.

    MATH  MathSciNet  Google Scholar 

  63. A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Technical Report 01/98, Department of Mathematics and Statistics, University of Cyprus (1998).

  64. A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems, Technical Report 02/98, Department of Mathematics and Statistics, University of Cyprus (1998).

  65. M. Katsurada, A mathematical study of the charge simulation method II, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36 (1989) 135-162.

    MATH  MathSciNet  Google Scholar 

  66. M. Katsurada, Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 37 (1990) 635-657.

    MATH  MathSciNet  Google Scholar 

  67. M. Katsurada, Charge simulation method using exterior mapping functions, Japan J. Indust. Appl. Math. 11 (1994) 47-61.

    Article  MATH  MathSciNet  Google Scholar 

  68. M. Katsurada and H. Okamoto, A mathematical study of the charge simulation method I, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 35 (1988) 507-518.

    MATH  MathSciNet  Google Scholar 

  69. M. Katsurada and H. Okamoto, The collocation points of the fundamental solution method for the potential problem, Comput. Math. Appl. 31 (1996) 123-137.

    Article  MATH  MathSciNet  Google Scholar 

  70. M. Keshavarzi, A modified integral equation applied to problems of elastostatics, Comput. Methods Appl. Mech. Engrg. 16 (1978) 1-9.

    Article  MATH  Google Scholar 

  71. S. Kim and S.J. Karrila, Microhydrodynamics: Principles and Selected Applications(Butterworth-Heinemann, Stoneham, 1991).

    Google Scholar 

  72. T. Kitagawa, On the numerical stability of the method of fundamental solution applied to the Dirichlet problem, Japan J. Appl. Math. 5 (1988) 123-133.

    MATH  MathSciNet  Google Scholar 

  73. T. Kitagawa, Asymptotic stability of the fundamental solution method, J. Comput. Appl. Math. 38 (1991) 263-269.

    Article  MATH  MathSciNet  Google Scholar 

  74. J.A. Kolodziej, Review of application of boundary collocation methods in mechanics of continuous media, Solid Mech. Arch. 12 (1987) 187-231.

    MATH  Google Scholar 

  75. P.S. Kondapalli, Time-harmonic solutions in acoustics and elastodynamics by the method of fundamental solutions, Ph.D. thesis, Department of Engineering Mechanics, University of Kentucky (1991).

  76. P.S. Kondapalli, D.J. Shippy and G. Fairweather, Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, J. Acoust. Soc. Amer. 91 (1992) 1844-1854.

    Article  Google Scholar 

  77. P.S. Kondapalli, D.J. Shippy and G. Fairweather, The method of fundamental solutions for transmission and scattering of elastic waves, Comput. Methods Appl. Mech. Engrg. 96 (1992) 255-269.

    Article  MATH  Google Scholar 

  78. G.H. Koopman, L. Song and J.B. Fahnline, A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Amer. 86 (1989) 2433-2438.

    Article  Google Scholar 

  79. R. Kress and A. Mohsen, On the simulation source technique for exterior problems in acoustics, Math. Methods Appl. Sci. 8 (1986) 585-597.

    MATH  MathSciNet  Google Scholar 

  80. V.D. Kupradze, A method for the approximate solution of limiting problems in mathematical physics, Comput. Math. Math. Phys. 4 (1964) 199-205.

    Article  MATH  Google Scholar 

  81. V.D. Kupradze, Potential Methods in the Theory of Elasticity(Israel Program for Scientific Translations, Jerusalem, 1965).

    MATH  Google Scholar 

  82. V.D. Kupradze, On the approximate solution of problems in mathematical physics, Russian Math. Surveys 22 (1967) 58-108.

    Article  MathSciNet  Google Scholar 

  83. V.D. Kupradze and M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput. Math. Math. Phys. 4 (1964) 82-126.

    Article  MATH  MathSciNet  Google Scholar 

  84. D. Levin and A. Tal, A boundary collocation method for the solution of a flow problem in a complex three-dimensional porous medium, Internat. J. Numer. Methods Fluids 6 (1986) 611-622.

    Article  MATH  Google Scholar 

  85. S.A. Lifits and S. Yu. Reutsky, The method of fundamental solutions and singular expansions for the numerical solution of the elliptic boundary-value problems with singularities, Prépublication 41, Institut de Mathématiques de Jussieu, Unité Mixte de Recherche 9994, Universités Paris VI et Paris VII/CNRS (October 1995).

  86. M. MacDonell, A boundary method applied to the modified Helmholtz equation in three dimensions and its application to a waste disposal problem in the deep ocean, M.S. thesis, Department of Computer Science, University of Toronto (1985).

  87. E. Mahajerin, An extension of the superposition method for plane anisotropic elastic bodies, Comput. & Structures 21 (1985) 953-958.

    Article  MATH  Google Scholar 

  88. M. Maiti and S.K. Chakrabarty, Integral equations solutions for simply supported polygonal plates, Internat. J. Engrg. Sci. 12 (1974) 793-806.

    Article  MATH  Google Scholar 

  89. R. Mathon and R.L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J. Numer. Anal. 14 (1977) 638-650.

    Article  MATH  MathSciNet  Google Scholar 

  90. S. Murashima and H. Kuahara, An approximate method to solve two-dimensional Laplace's equation by means of superposition of Green's functions on a Riemann surface, J. Inform. Process. 3 (1980) 127-139.

    MATH  MathSciNet  Google Scholar 

  91. S. Murashima and Y. Nonaka, Interactive Laplace's equation analyzing system ILAS, in: Boundary Elements VIII, Proceedings of the 8th International Conference, Tokyo, Japan, 1986, eds. M. Tanaka and C.A. Brebbia (Springer, Berlin, 1987) pp. 621-630.

    Google Scholar 

  92. S. Murashima, Y. Nonaka and H. Nieda, The charge simulation method and its applications to two-dimensional elasticity, in: Boundary Elements V, Proceedings of the 5th International Conference, Hiroshima, Japan, 1983, eds. C.A. Brebbia, T. Fugatami and M. Tanaka (Springer, Berlin, 1983) pp. 75-80.

    Google Scholar 

  93. Y. Niwa, S. Kobayashi and T. Fukui, An application of the integral equation method to plate-bending problems, Mem. Fac. Eng. Kyoto Univ. (Japan) 36 (1974) 140-158.

    Google Scholar 

  94. Numerical Algorithms Group Library, NAG(UK) Ltd, Oxford, UK.

  95. E.R. Oliveira, Plane stress analysis by a general integral method, J. Engrg. Mech. Div. ASCE 94 (1968) 79-101.

    Google Scholar 

  96. Y.H. Pao and V. Varathatajulu, Huygens' principle, radiation conditions and integral formulae for the scattering of elastic waves, Department of Theoretical and Applied Mechanics, Cornell University (1975).

  97. P.W. Partridge, C.A. Brebbia and L.C. Wrobel, The Dual Reciprocity Boundary Element Method(Computational Mechanics Publications, Southampton, 1992).

    MATH  Google Scholar 

  98. C. Patterson and M.A. Sheikh, Regular boundary integral equations for stress analysis, in: Boundary Element Methods, Proceedings of the 3rd International Seminar on Boundary Element Methods, Irvine, CA, 1981, ed. C.A. Brebbia (Springer, New York, 1981) pp. 85-104.

    Google Scholar 

  99. C. Patterson and M.A. Sheikh, On the use of fundamental solutions in Trefftz method for potential and elasticity problems, in: Boundary Element Methods in Engineering, Proceedings of the Fourth International Seminar on Boundary Element Methods, Southampton, 1982, ed. C.A. Brebbia (Springer, New York, 1982) pp. 43-54.

    Google Scholar 

  100. A. Poullikkas, The method of fundamental solutions for the solution of elliptic boundary value problems, Ph.D. thesis, Department of Mechanical Engineering, Loughborough University (1998).

  101. A. Poullikkas, A. Karageorghis and G. Georgiou, Methods of fundamental solutions for harmonic and biharmonic boundary value problems, Comput. Mech. 21 (1998) 416-423.

    Article  MATH  MathSciNet  Google Scholar 

  102. A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for Signorini problems, IMA J. Numer. Anal. 18 (1998) 273-285.

    Article  MATH  MathSciNet  Google Scholar 

  103. A. Poullikkas, A. Karageorghis, G. Georgiou and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer. Methods Partial Differential Equations, to appear.

  104. A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for inhomogeneous elliptic problems, Comput. Mech., to appear.

  105. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow(Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  106. J. Raamachandran and C. Rajamohan, Analysis of composite plates using charge simulation method, Engrg. Anal. Boundary Elem. 18 (1996) 131-135.

    Article  Google Scholar 

  107. D. Redekop, Fundamental solutions for the collocation method in planar elastostatics, Appl. Math. Modelling 6 (1982) 390-393.

    Article  MATH  Google Scholar 

  108. D. Redekop and R.S.W. Cheung, Fundamental solutions for the collocation method in three-dimensional elastostatics, Comput. & Structures 26 (1987) 703-707.

    Article  MATH  Google Scholar 

  109. D. Redekop and J.C. Thompson, Use of fundamental solutions in the collocation method in axisymmetric elastostatics, Comput. & Structures 17 (1983) 485-490.

    Article  Google Scholar 

  110. F.J. Rizzo and D.J. Shippy, A boundary integral approach to potential and elasticity problems for axisymmetric bodies with arbitrary boundary conditions, Mech. Res. Comm. 6 (1979) 99-103.

    Article  MATH  Google Scholar 

  111. A.F. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy, A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions, J. Acoust. Soc. Amer. 80 (1986) 1241-1247.

    Article  Google Scholar 

  112. D.J. Shippy, P.S. Kondapalli and G. Fairweather, Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, Math. Comput. Modelling 14 (1990) 74-79.

    Article  MATH  Google Scholar 

  113. N. Simos and A.M. Sadegh, An indirect BIM for static analysis of spherical shells using auxiliary boundaries, Internat. J. Numer. Methods Engrg. 32 (1991) 313-325.

    Article  MATH  Google Scholar 

  114. L. Song, G.H. Koopman and J.B. Fahnline, Numerical errors associated with the method of superposition for computing acoustic fields, J. Acoust. Soc. Amer. 89 (1991) 2625-2633.

    Article  Google Scholar 

  115. L. Song, G.H. Koopman and J.B. Fahnline, Active control of the acoustic radiation of a vibrating structure using a superposition formulation, J. Acoust. Soc. Amer. 89 (1991) 2786-2792.

    Article  Google Scholar 

  116. S.P. Walker, Diffusion problems using transient discrete source superposition, Internat. J. Numer. Methods Engrg. 35 (1992) 165-178.

    Article  MATH  Google Scholar 

  117. J.L. Wearing and O. Bettahar, The analysis of plate bending problems using the regular direct boundary element method, Engrg. Anal. Boundary Elem. 16 (1995) 261-271.

    Article  Google Scholar 

  118. W.C. Webster, The flow about arbitrary, three-dimensional smooth bodies, J. Ship Res. 19 (1975) 206-218.

    Google Scholar 

  119. S. Weinbaum, P. Ganatos and Z.-Y. Yan, Numerical multipole and boundary integral equation techniques in Stokes flow, Ann. Rev. Fluid Mech. 22 (1990) 275-316.

    Article  MATH  MathSciNet  Google Scholar 

  120. T. Westphal, C.S. de Barcellos and J. Tomás Pereira, On general fundamental solutions of some linear elliptic differential operators, Engrg. Anal. Boundary Elem. 17 (1996) 279-285.

    Article  Google Scholar 

  121. B.C. Wu and N.J. Altiero, A boundary integral method applied to plates of arbitrary plan form and arbitrary boundary conditions, Comput. & Structures 10 (1979) 703-707.

    Article  MATH  MathSciNet  Google Scholar 

  122. H. Zhou and C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, J. Comput. Phys. 117 (1995) 79-89.

    Article  MATH  Google Scholar 

  123. C.S. Chen, M.A. Golberg and Y.C. Hon, Numerical justification of fundamental solutions and the quasi-Monte Carlo method for Poisson-type equations, Engrg. Anal. Boundary Elem., to appear.

  124. C.S. Chen, M.A. Golberg and Y.C. Hon, Las Vegas method for diffusion equations, Internat. J. Numer. Methods Engrg., to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairweather, G., Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics 9, 69–95 (1998). https://doi.org/10.1023/A:1018981221740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018981221740

Navigation