Skip to main content
Log in

Semantics and expressiveness of disjunctive ordered logic

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The paper proposes a knowledge representation language which extends logic programming with disjunction, inheritance, true negation and modularization. The resulting language is called Disjunctive Ordered Logic (\(\mathcal{D}\mathcal{O}\mathcal{L}\) for short). A model‐theoretic semantics for \(\mathcal{D}\mathcal{O}\mathcal{L}\) is given, and it is shown to extend the stable model semantics of disjunctive logic programs. A number of examples show the suitability of \(\mathcal{D}\mathcal{O}\mathcal{L}\) for knowledge representation and commonsense reasoning. Among other things, the proposed language appears to be a powerful tool for the description of diagnostic processes which are based on stepwise refinements. The complexity and the expressiveness of the language are carefully analyzed. The analysis pays particular attention to the relative power and complexity of inheritance, negation and disjunction. An interesting result in this course concerns the role played by inheritance. Indeed, our results show that inheritance does not increase at all the complexity of any fragment of the language, while it does increase the expressive power of some \(\mathcal{D}\mathcal{O}\mathcal{L}\) fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases (Addison-Wesley, Reading, MA, 1995).

    MATH  Google Scholar 

  2. C. Baral and M. Gelfond, Logic programming and knowledge representation, J. Logic Programming 19/20 (1994) 73-148.

    Article  MathSciNet  Google Scholar 

  3. N. Bidoit and C. Froidevaux, Negation by default and unstratifiable logic programs, Theoret. Comput. Sci. 78 (1991) 85-112.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Brewka, Well-founded semantics for extended logic programs with dynamic preferences, J. Artif. Intell. Res. 4 (1996) 19-36.

    MATH  MathSciNet  Google Scholar 

  5. G. Brewka and T. Eiter, Preferred answer sets for extended logic programs, in: Proc. KR '98 (Morgan Kaufmann, San Mateo, CA, 1998).

    Google Scholar 

  6. F. Buccafurri, N. Leone and P. Rullo, Stable models and their computation for logic programming with inheritance and true negation, J. Logic Programming 27(1) (1996) 5-43.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Cadoli, and M. Schaerf, A survey of complexity results for non-monotonic logics, J. Logic Programming 17 (1993) 127-160.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Chandra and D. Harel, Structure and complexity of relational queries, J. Comput. System Sci. 25(1) (1982) 99-128.

    Article  MATH  Google Scholar 

  9. Y. Dimopoulos and A. Kakas, Logic programming without negation as failure, in: Proc. International Symposium on Logic Programming (MIT Press, Cambridge, MA, 1995) pp. 369-383.

    Google Scholar 

  10. J. Dix, A classification theory of semantics of normal logic programs: Strong properties, Fund. Inform. 22 (1995) 227-255.

    MATH  MathSciNet  Google Scholar 

  11. J. Dix, A classification theory of semantics of normal logic programs: Weak properties, Fund. Inform. 22 (1995) 257-288.

    MATH  MathSciNet  Google Scholar 

  12. T. Eiter and G. Gottlob, On the computational cost of disjunctive logic programming: Propositional case, Ann. Math. Artificial Intelligence (1995).

  13. T. Eiter, G. Gottlob and H. Mannila, Disjunctive Datalog, ACM Trans. Database Systems 22(3) (1997).

  14. T. Eiter, G. Gottlob and N. Leone, Abduction from logic programs: Semantics and complexity, Theoret. Comput. Sci. 189(1–2) (1997) 129-177.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarcello, A deductive system for non-monotonic reasoning, in: Proceedings of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-97), eds. J. Dix, U. Furbach and A. Nerode, Lecture Notes in Computer Science, Vol. 1265 (Springer, New York, 1997) pp. 364-375.

    Google Scholar 

  16. T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarcello, The knowledge representation system dlv: Progress report, comparisons, and benchmarks, in: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning — KR '98 (Morgan Kaufman, Trento, Italy, 1998).

    Google Scholar 

  17. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: Complexity of Computation, ed. R.M. Karp (Amer. Math. Soc., Providence, RI, 1974) pp. 43-74.

    Google Scholar 

  18. M. Gelfond and V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation Computing 9 (1991) 365-385.

    Article  MATH  Google Scholar 

  19. M. Gelfond and T.C. Son, Reasoning with prioritized defaults, in: Proc. of the Workshop Logic Programming and Knowledge Representation — LPKR '97, Port Jefferson, New York (October 1997).

  20. G. Gottlob, Complexity results for nonmonotonic logics, J. Logic Comput. 2(3) (1992) 397-425.

    MATH  MathSciNet  Google Scholar 

  21. A.C. Kakas and P. Mancarella, The acceptability semantics for logic programs, in: Proc. International Conference on Logic Programming — ICLP '94, S. Margherita, Italy (1994).

    Google Scholar 

  22. R.A. Kowalski and F. Sadri, Logic programs with exceptions, in: Proc. of 7th ICLP, Jerusalem (1990) pp. 598-616.

  23. E. Laenens, D. Saccá and D. Vermeir, Extending logic programming, in: Proc. of ACM SIGMOD (May 1990).

  24. E. Laenens and D. Vermeir, A fixpoint semantics for ordered logic, J. Logic Comput. 1(2) (1990) 159-185.

    MATH  MathSciNet  Google Scholar 

  25. N. Leone, A. Mecchia, G. Rossi and P. Rullo, A deductive environment for dealing with objects and non-monotonic reasoning, IEEE Trans. Knowledge Data Engrg. 9(4) (1997).

  26. N. Leone and G. Rossi, Well-founded semantics and stratification for ordered logic programs, New Generation Computing 12(1) (1993) 91-121.

    MATH  Google Scholar 

  27. N. Leone and P. Rullo, Ordered logic programming with sets, J. Logic Comput. 3(6) (1993) 621-642.

    MATH  MathSciNet  Google Scholar 

  28. N. Leone, P. Rullo and F. Scarcello, Disjunctive stable models: Unfounded sets, fixpoint semantics and computation, Inform. Comput. 135(2) (1997) 69-112.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Lobo, J. Minker and A. Rajasekar, Foundations of Disjunctive Logic Programming (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  30. W. Marek and M. Truszczyński, Modal logic for default reasoning, Ann. Math. Artificial Intelligence 1 (1990) 275-302.

    Article  MATH  Google Scholar 

  31. W. Marek and M. Truszczyński, Autoepistemic logic, Journal of the ACM 38(3) (1991) 518-619.

    Article  Google Scholar 

  32. J. McCarthy, Circumscription — a form of nonmonotonic reasoning, Artificial Intelligence 13 (1980) 27-39.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Minker, On indefinite data bases and the closed world assumption, in: Proc. CADE-82 (1982) pp. 292-308.

  34. D. Nute, Defeasible logic, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. III, eds. D. Gabbay, C. Hogger and J. Robinson (Clarendon Press, Oxford, 1994) pp. 353-395.

    Google Scholar 

  35. S. Pradhan and J. Minker, Combining datalog databases using priorities, Internat. J. Cooperative Intell. Syst. (1996).

  36. T. Przymusinski, Stable semantics for disjunctive programs, New Generation Computing 9 (1991) 401-424.

    MATH  Google Scholar 

  37. R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81-132.

    Article  MATH  MathSciNet  Google Scholar 

  38. D. Saccà, The expressive powers of stable models for bound and unbound DATALOG queries, J. Comput. System Sci. 54(3) (1997) 441-464.

    Article  MATH  MathSciNet  Google Scholar 

  39. C. Sakama and K. Inoue, Representing priorities in logic programs, in: Proc. Joint International Conference and Symposium on Logic Programming (MIT Press, Cambridge, MA, 1996) pp. 82-96.

    Google Scholar 

  40. J.S. Schlipf, The expressive powers of logic programming semantics, in: Proc. ACM Symposium on Principles of Database Systems (1990) pp. 196-204.

  41. G. Shvarts, Autoepistemic modal logics, in: Proc. TARK-90 (Morgan Kaufman, San Mateo, CA, 1990).

    Google Scholar 

  42. D.S. Touretzky, The Mathematics of Inheritance Systems (Pitman, London, 1986).

    MATH  Google Scholar 

  43. J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vols. 1 and 2 (Computer Science Press, Rockville, MD, 1989).

    Google Scholar 

  44. M.Y. Vardi, The complexity of relational query languages, in: Proc. ACM Symp. on Theory of Computing (1982) pp. 137-146.

  45. Y. Zhang and N.Y. Foo, Answer sets for prioritized logic programs, in: Proc. ILPS '97, Port Jefferson, New York (October 1997) pp. 69-84.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buccafurri, F., Leone, N. & Rullo, P. Semantics and expressiveness of disjunctive ordered logic. Annals of Mathematics and Artificial Intelligence 25, 311–337 (1999). https://doi.org/10.1023/A:1018986207453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018986207453

Keywords

Navigation