Skip to main content
Log in

A result about scale transformation families in approximation: application to surface fitting from rapidly varying data

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Scale transformations are common in approximation. In surface approximation from rapidly varying data, one wants to suppress, or at least dampen the oscillations of the approximation near steep gradients implied by the data. In that case, scale transformations can be used to give some control over overshoot when the surface has large variations of its gradient. Conversely, in image analysis, scale transformations are used in preprocessing to enhance some features present on the image or to increase jumps of grey levels before segmentation of the image. In this paper, we establish the convergence of an approximation method which allows some control over the behavior of the approximation. More precisely, we study the convergence of an approximation from a data set \(\{ x_i ,f(x_i )\} \)of \(\mathbb{R}^n \times \mathbb{R} \), while using scale transformations on the \(f(x_i ) \)values before and after classical approximation. In addition, the construction of scale transformations is also given. The algorithm is presented with some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Apprato, Approximation de surfaces paramétrées par éléments finis, Thèse d'Etat, Université de Pau et des Pays de l'Adour, France (1987).

    Google Scholar 

  2. D. Apprato and C. Gout, Noise removal in medical imaging, Report, Center for Pure and Applied Mathematics, PAM no. 728, University of California at Berkeley, Berkeley (1998).

    Google Scholar 

  3. R. Arcangéli, Some applications of discrete D msplines, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L.L. Schumaker (Academic Press, New York, 1989) pp. 35-44.

    Google Scholar 

  4. R. Arcangéli, M. Cruz de Silanes and J.J. Torrens, D m-splines: Théorie et Applications(2000), to appear.

  5. A. Bouhamidi, Interpolation et approximation par des fonctions splines radiales à plusieurs variables, Thèse, Université de Nantes, France (1992).

    Google Scholar 

  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems(North-Holland, Amsterdam, 1978).

    Google Scholar 

  7. P.G. Ciarlet and P.A. Raviart, General Lagrange and Hermite interpolation in Rnapplications to finite element methods, Arch. Mech. Anal. 46 (1972) 177-199.

    Google Scholar 

  8. C. de Boor, A Practical Guide to Splines(Springer, Berlin/Heidelberg, 1978).

    Google Scholar 

  9. N. Dyn, D. Levin and S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Statist. Comput. 7 (1986) 639-659.

    Google Scholar 

  10. R. Franke, Thin plate spline with tension, Comput. Aided Geom. Design 2 (1985) 87-95.

    Google Scholar 

  11. M. Gasca and A. Lopez-Carmona, A general recurrence interpolation formula and its applications to multivariate interpolations, J. Approx. Theory 34 (1982) 361-374.

    Google Scholar 

  12. M. Gasca and G. Muhlbach, Multivariate polynomial interpolation under projectivities II: Neville-Aitken formulas, Numer. Algorithms 2 (1992) 255-277.

    Google Scholar 

  13. C. Gout, Approximation of curves and surfaces from rapidly varying data, Report, Center for Pure and Applied Mathematics, PAM no. 729, University of California at Berkeley, Berkeley (1998).

    Google Scholar 

  14. C. Gout, Approximation using scale transformations, in: Approximation Theory IX, Vol. 1, eds. C.K. Chui and L.L. Schumaker (1999) pp. 151-158.

  15. C. Gout and D. Komatitsch, Surface fitting of rapidly varying data: Application to geophysical surfaces, Math. Geology (2000) to appear.

  16. P.J. Laurent, Approximation et Optimisation(Hermann, Paris, 1972).

    Google Scholar 

  17. A. Le Méhauté, Interpolation et approximation par des fonctions polynomiales par morceaux dans Rn, Thèse d'Etat, Rennes, France (1984).

    Google Scholar 

  18. J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques(Masson, Paris 1967).

    Google Scholar 

  19. L.L. Schumaker, Spline Functions: Basic Theory(Wiley-Interscience, New York, 1981).

    Google Scholar 

  20. J.J. Torrens, Interpolacion de superficies parametricas con discontinuidades mediante, elementos finitos, aplicaciones, Thèse, Universidad de Zaragoza, Spain (1991).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apprato, D., Gout, C. A result about scale transformation families in approximation: application to surface fitting from rapidly varying data. Numerical Algorithms 23, 263–279 (2000). https://doi.org/10.1023/A:1019108318920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019108318920

Navigation