Skip to main content
Log in

Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) problem when constraints on the matrix structure need to be imposed. Similar to the ordinary TLS approach, the STLS approach can be used to determine the parameter vector of a linear model, given some noisy measurements. In many signal processing applications, the imposition of this matrix structure constraint is necessary for obtaining Maximum Likelihood (ML) estimates of the parameter vector. In this paper we consider the Toeplitz (Hankel) STLS problem (i.e., an STLS problem in which the Toeplitz (Hankel) structure needs to be preserved). A fast implementation of an algorithm for solving this frequently occurring STLS problem is proposed. The increased efficiency is obtained by exploiting the low displacement rank of the involved matrices and the sparsity of the associated generators.

The fast implementation is compared to two other implementations of algorithms for solving the Toeplitz (Hankel) STLS problem. The comparison is carried out on a recently proposed speech compression scheme. The numerical results confirm the high efficiency of the newly proposed fast implementation: the straightforward implementations have a complexity of O((m+n)3) and O(m3) whereas the proposed implementation has a complexity of O(mn+n2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Abatzoglou and R.H. Hackman, Constrained total least squares based extraction of acoustic resonances of elastic targets, in: Proc. of IEEE Internat. Conf. on Acoustics, Speech and Signal Processing, Toronto, ON, Canada (May 1991) pp. 3385-3388.

  2. T.J. Abatzoglou, J.M. Mendel and G.A. Harada, The constrained total least squares technique and its applications to harmonic superresolution, IEEE Trans. Signal Processing 39 (1991) 1070-1086.

    Article  MATH  Google Scholar 

  3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users' Guide (SIAM, Philadelphia, 1995).

    Google Scholar 

  4. E. Anderson, Z. Bai and J.J. Dongarra, Generalized QR factorization and its applications, Technical Report CS-91-131 (LAPACK Working Note 31), Computer Science Department, University of Tennessee, Knoxville (1991).

    Google Scholar 

  5. A.W. Bojanczyk, R.P. Brent, P. Van Dooren and F.R. De Hoog, A note on downdating the Cholesky factorization, SIAM J. Sci. Statist. Comput. 1 (1980) 210-220.

    Article  MathSciNet  Google Scholar 

  6. S. Chandrasekaran and A.H. Sayed, Stabilizing the generalized Schur algorithm.

  7. R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1987).

    Google Scholar 

  8. P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, London, 1981).

    Google Scholar 

  9. G.H. Golub and C.F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. (1980).

  10. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 1989).

    Google Scholar 

  11. T. Kailath, Displacement structure and array algorithms, in: Fast Reliable Algorithms for Matrices with Structure, eds. T. Kailath and A.H. Sayed (SIAM, Philadelphia, PA, 1999).

    Google Scholar 

  12. T. Kailath and A.H. Sayed, Displacement structure: Theory and applications, SIAM Rev. 37 (1995) 297-386.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Lemmerling, Structured total least squares: analysis, algorithms and applications, Ph.D. thesis, Department of Electrical Engineering, ESAT-SISTA/COSIC, Katholieke Universiteit Leuven (1999).

  14. P. Lemmerling, I. Dologlou and S. Van Huffel, Variable rate speech compression based on exact modeling and waveform vector quantization, in: Signal Processing Sympos. (SPS 98), Katholieke Universiteit Leuven, Leuven (March 1998), IEEE Benelux Signal Processing Chapter, pp. 127-130.

    Google Scholar 

  15. P. Lemmerling and S. Van Huffel, Analysis of the structured total least squares problem for Hankel/Toeplitz matrices, Technical Report/Internal Report 98-100, ESAT-SISTA/COSIC, Katholieke Universiteit Leuven (1998).

  16. L. Ljung, System Identification: Theory for the User (Prentice-Hall, Englewood Cliffs, NJ, 1987).

    Google Scholar 

  17. N. Mastronardi, P. Van Dooren and S. Van Huffel, Stability of the generalized Schur algorithm, Technical Report/Internal Report 99-82, ESAT-SISTA/COSIC, Katholieke Universiteit Leuven (1999).

  18. J.B. Rosen, H. Park and J. Glick, Total least norm formulation and solution for structured problems, SIAM J. Matrix Anal. Appl. 17(1) (1996) 110-128.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Stewart and P. Van Dooren, Stability issues in the factorization of structured matrices, SIAM J. Matrix Anal. Appl. 18 (1997) 104-118.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Van Huffel, C. Decanniere, H. Chen and P. Van Hecke, Algorithm for time-domain nmr data fitting based on total least squares, J. Magn. Reson. A 110 (1994) 228-237.

    Article  Google Scholar 

  21. S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis, Vol. 9 (SIAM, Philadelphia, PA, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmerling, P., Mastronardi, N. & Van Huffel, S. Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem. Numerical Algorithms 23, 371–392 (2000). https://doi.org/10.1023/A:1019116520737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019116520737

Navigation