Skip to main content
Log in

DAEs and PDEs in elastic multibody systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Elastic multibody systems arise in the simulation of vehicles, robots, air- and spacecrafts. They feature a mixed structure with differential-algebraic equations (DAEs) governing the gross motion and partial differential equations (PDEs) describing the elastic deformation of particular bodies. We introduce a general modelling framework for this new application field and discuss numerical simulation techniques from several points of view. Due to different time scales, singular perturbation theory and model reduction play an important role. A slider crank mechanism with a 2D FE grid for the elastic connecting rod illustrates the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bornemann and C. Schütte, Homogenization of Hamiltonian systems with a strong constraining potential, Physica D 102 (1997) 57-77.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.L. Campbell and W. Marszalek, The index of an infinite dimensional implicit system, Report, North Carolina State University (1996), to appear in Math. Modelling Systems.

  3. P.G. Ciarlet, Mathematical Elasticity, Vol. I (North-Holland, New York, 1988).

    MATH  Google Scholar 

  4. M. Géradin, Computational aspects of the finite element approach to flexible multibody systems, in: Advanced Multibody System Dynamics, ed. W. Schiehlen (Kluwer Academic, Stuttgart, 1993) pp. 337-354.

    Google Scholar 

  5. E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. II, 2nd ed.(Springer, Berlin/Heidelberg, 1996).

    MATH  Google Scholar 

  6. E. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods (Allyn and Bacon, Boston, 1989).

    Google Scholar 

  7. T.J. Hughes, The Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1987).

    MATH  Google Scholar 

  8. M. Jahnke, K. Popp and B. Dirr, Approximate analysis of flexible parts in multibody systems using the finite element method, in: Advanced Multibody System Dynamics, ed. W. Schiehlen (Kluwer Academic, Stuttgart, 1993) pp. 237-256.

    Google Scholar 

  9. N. Kikuchi and J. Oden, Conctact Problems in Elasticity (SIAM, Philadelphia, PA, 1988).

    Google Scholar 

  10. C. Lubich, Integration of stiff mechanical systems by Runge-Kutta methods, Z. Angew. Math. Phys. 44 (1993) 1022-1053.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Noor, Recent advances and applications of reduction methods, Appl. Mech. Rev. 47 (1994) 125-146.

    Article  Google Scholar 

  12. A. Nordmark, The Matlab PDE Toolbox (The Mathworks Inc., 1995).

  13. P.J. Rabier and W.C. Rheinboldt, On the numerical solution of the Euler-Lagrange equations, SIAM J. Numer. Anal. 32 (1995) 318-329.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Reich, Smoothed dynamics of highly oscillatory Hamiltonian systems, Physica D 89 (1995) 28-42.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Sachau, Berücksichtigung von flexiblen Körpern und Fügestellen in Mehrkörpersystemen zur Simulation aktiver Raumfahrtstrukturen, Dissertation, Universität Stuttgart (1996).

  16. W.O. Schiehlen, ed., Multibody System Handbook (Springer, Berlin, 1990).

  17. B. Simeon, MBSPACK - Numerical integration software for constrained mechanical motion, Surv. Math. Ind. 5 (1995) 169-202.

    MATH  MathSciNet  Google Scholar 

  18. B. Simeon, Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs, Math. Modelling Systems 2 (1996) 1-18.

    MATH  Google Scholar 

  19. B. Simeon, Order reduction of stiff solvers at elastic multibody systems, to appear in Appl. Numer. Math.

  20. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 1993).

    MATH  Google Scholar 

  21. O. Wallrapp, Standardization of flexible body modelling in MBS codes, Mech. Struct. Mach. 22 (1994) 283-304.

    Google Scholar 

  22. K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon, Oxford, 1982).

    MATH  Google Scholar 

  23. J. Yen, L. Petzold and S. Raha, A time integration algorithm for flexible mechanism dynamics: the DAE α-method, SIAM J. Sci. Comput. 19 (1998) 1513-1534.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simeon, B. DAEs and PDEs in elastic multibody systems. Numerical Algorithms 19, 235–246 (1998). https://doi.org/10.1023/A:1019118809892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019118809892

Navigation