Skip to main content
Log in

An overview of Brownian and non-Brownian FCLTs for the single-server queue

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We review functional central limit theorems (FCLTs) for the queue-content process in a single-server queue with finite waiting room and the first-come first-served service discipline. We emphasize alternatives to the familiar heavy-traffic FCLTs with reflected Brownian motion (RBM) limit process that arise with heavy-tailed probability distributions and strong dependence. Just as for the familiar convergence to RBM, the alternative FCLTs are obtained by applying the continuous mapping theorem with the reflection map to previously established FCLTs for partial sums. We consider a discrete-time model and first assume that the cumulative net-input process has stationary and independent increments, with jumps up allowed to have infinite variance or even infinite mean. For essentially a single model, the queue must be in heavy traffic and the limit is a reflected stable process, whose steady-state distribution can be calculated by numerically inverting its Laplace transform. For a sequence of models, the queue need not be in heavy traffic, and the limit can be a general reflected Lévy process. When the Lévy process representing the net input has no negative jumps, the steady-state distribution of the reflected Lévy process again can be calculated by numerically inverting its Laplace transform. We also establish FCLTs for the queue-content process when the input process is a superposition of many independent component arrival processes, each of which may exhibit complex dependence. Then the limiting input process is a Gaussian process. When the limiting net-input process is also a Gaussian process and there is unlimited waiting room, the steady-state distribution of the limiting reflected Gaussian process can be conveniently approximated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abate, G.L. Choudhury and W. Whitt, Calculation of the GI/G/1 waiting time distribution and its cumulants from Pollaczek's formulas, Arch.Elektronik Ubertragungstechnik 47 (1993) 311–321.

    Google Scholar 

  2. J. Abate, G.L. Choudhury and W. Whitt, Waiting-time tail probabilities in queues with long-tail service-time distributions, Queueing Systems 16 (1994) 311–338.

    Article  Google Scholar 

  3. J. Abate and W. Whitt, Numerical inversion of Laplace transforms of probability distributions, ORSA J.Comput. 7 (1995) 36–43.

    Google Scholar 

  4. J. Abate and W. Whitt, Explicit M/G/1 waiting-time distributions for a class of long-tail servicetime distributions, Oper.Res.Lett. 25 (1999) 25–31.

    Article  Google Scholar 

  5. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1972).

    Google Scholar 

  6. R.G. Addie and M. Zukerman, An approximation for performance evaluation of stationary single server queues, IEEE Trans.Commun. 42 (1994) 3150–3160.

    Article  Google Scholar 

  7. P. Barford and M. Crovella, Generating representative Web workloads for network and server performance evaluation, in: Proc.of 1998 ACM Sigmetrics (1998) pp.151–160.

  8. A.W. Berger and W. Whitt, The Brownian approximation for rate-control throttles and the G/G/1/C queue, J.Discrete Event Dyn.Systems 2 (1992) 7–60.

    Article  Google Scholar 

  9. J. Bertoin, L´evy Processes (Cambridge Univ.Press, Cambridge, UK, 1996).

    Google Scholar 

  10. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  11. N.H. Bingham, Fluctuation theory in continuous time, Adv.in Appl.Probab. 7 (1975) 705–766.

    Article  Google Scholar 

  12. L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities (Springer, New York, 1992).

    Google Scholar 

  13. A.A. Borovkov, Some limit theorems in the theory of mass service, II, Theory Probab.Appl. 10 (1965) 375–400.

    Article  Google Scholar 

  14. O.J. Boxma and J.W. Cohen, The M/G/1 queue with heavy-tailed service time distribution, IEEE J.Selected Areas Commun. 16 (1998) 749–763.

    Article  Google Scholar 

  15. O.J. Boxma and J.W. Cohen, Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions, Queueing Systems 33 (1999) 177–204.

    Article  Google Scholar 

  16. O.J. Boxma and J.W. Cohen, The M/G/1 queue: Heavy tails and heavy traffic, in: Self-Similar Network Traffic and Performance Evaluation, eds.K. Park and W. Willinger (Wiley, New York, 2000) to appear.

    Google Scholar 

  17. M. Bramson, State space collapse with application to heavy traffic limits for multiclass queueing networks, Queueing Systems 30 (1998) 89–148.

    Article  Google Scholar 

  18. D.Y. Burman and D.R. Smith, An asymptotic analysis of a queueing system with Markov-modulated arrivals, Oper.Res. 34 (1986) 105–119.

    Google Scholar 

  19. H. Chen and A. Mandelbaum, Stochastic discrete flow networks: diffusion approximations and bottlenecks, Ann.Probab. 19 (1991) 1463–1519.

    Google Scholar 

  20. H. Chen and A. Mandelbaum, Leontief systems, RBVs and RBMs, in: Proc.Imperial College Workshop on Applied Stochastic Processes, eds.M.H.A. Davis and R.J. Elliott (Gordon and Breach, New York, 1991).

    Google Scholar 

  21. J. Choe and N.B. Shroff, A central limit theorem based approach for analyzing queue behavior in high-speed networks, IEEE/ACM Trans.Networking 6 (1998) 659–671.

    Article  Google Scholar 

  22. J. Choe and N.B. Shroff, On the supremum distribution of integrated stationary Gaussian processes with negative linear drift, Adv.in Appl.Probab. 31 (1999) 135–157.

    Article  Google Scholar 

  23. J.W. Cohen, Some results on regular variation for distributions in queueing and fluctuation theory, J.Appl.Probab. 10 (1973) 343–353.

    Article  Google Scholar 

  24. J.W. Cohen, The Single Server Queue, revised ed.(North-Holland, Amsterdam, 1982).

    Google Scholar 

  25. J.W. Cohen, A heavy-traffic theorem for the GI/G/1 queue with a Pareto-type service time distribution, Special issue dedicated to R.Syski of J.Appl.Math.Stochastic Anal. 11 (1998) 247–254.

    Google Scholar 

  26. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation (Springer, New York, 1974).

    Google Scholar 

  27. S.N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence (Wiley, New York, 1986).

    Google Scholar 

  28. W. Feller, An Introduction to Probability Theory and its Applications, Vol.II, 2nd ed.(Wiley, New York, 1971).

    Google Scholar 

  29. K.W. Fendick, V.R. Saksena and W. Whitt, Dependence in packet queues, IEEE Trans.Commun. 37 (1989) 1173–1183.

    Article  Google Scholar 

  30. H. Furrer, Z. Michna and A. Weron, Stable Lévy motion approximation in collective risk theory, Insurance: Math.Econom. 20 (1997) 97–114.

    Article  Google Scholar 

  31. D.P. Gaver and P.A. Jacobs, Waiting times when service times are stable laws: Tamed and wild, in: Advances in Applied Probability and Stochastic Processes, liber amicorium J. Keilson, eds.J.G.Shanthikumar and U.Sumita (Kluwer, Norwell, MA, 1999).

    Google Scholar 

  32. P.W. Glynn and W. Whitt, Ordinary CLT and WLLN versions of L = λW, Math.Oper.Res. 13 (1988) 674–692.

    Google Scholar 

  33. B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, revised ed.(Addison-Wesley, Reading, MA, 1968).

    Google Scholar 

  34. M.G. Hahn, Central limit theorems in D[0, 1], Z.Wahrsch.verw.Geb. 44 (1978) 89–101.

    Article  Google Scholar 

  35. J.M. Harrison, Brownian Motion and Stochastic Flow Systems (Wiley, New York, 1985).

    Google Scholar 

  36. J.M. Harrison and M.I. Reiman, Reflected Brownian motion on an orthant, Ann.Probab. 9 (1981) 302–308.

    Google Scholar 

  37. D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic, I, Adv.in Appl.Probab. 2 (1970) 150–177.

    Google Scholar 

  38. D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic, II: Sequences, networks and batches, Adv.in Appl.Probab. 2 (1970) 355–369.

    Article  Google Scholar 

  39. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes (Springer, New York, 1987).

    Google Scholar 

  40. O. Kella and W. Whitt, Diffusion approximations for queues with server vacations, Adv.in Appl.Probab. 22 (1990) 706–729.

    Article  Google Scholar 

  41. O. Kella and W. Whitt, Useful martingales for stochastic storage processes with Lévy input, J.Appl.Probab. 29 (1992) 396–403.

    Article  Google Scholar 

  42. O. Kella and W. Whitt, Stability and structural properties of stochastic storage networks, J.Appl.Probab. 33 (1996) 1169–1180.

    Article  Google Scholar 

  43. D.P. Kennedy, Limit theorems for finite dams, Stochastic Process.Appl. 1 (1973) 269–278.

    Article  Google Scholar 

  44. J.F.C. Kingman, The single server queue in heavy traffic, Proc.Cambridge Philos.Soc. 57 (1961) 902–904.

    Article  Google Scholar 

  45. J.F.C. Kingman, On queues in heavy traffic, J.Roy.Statist.Soc.Ser. B 24 (1962) 383–392.

    Google Scholar 

  46. C. Knessl and J.A. Morrison, Heavy traffic analysis of data handling system with multiple sources, SIAM J.Appl.Math.51 (1991) 187–213.

    Article  Google Scholar 

  47. T. Konstantopoulos and S.-J. Lin, Macroscopic models for long-range dependent network traffic, Queueing Systems 28 (1998) 215–243.

    Article  Google Scholar 

  48. T. Konstantopoulos, G. Last and S.-J. Lin, On stationary reflected Lévy processes, University of Texas at Austin (1999).

    Google Scholar 

  49. T.G. Kurtz, Limit theorems for workload input models, in: Stochastic Networks: Theory and Applications, eds.F.P. Kelly, S. Zachary and I. Ziedins (Oxford Univ. Press, Oxford, UK, 1996) pp.119–139.

    Google Scholar 

  50. H.J. Kushner and L.F. Martins, Numerical methods for controlled and uncontrolled multiplexing and queueing systems, Queueing Systems 16 (1994) 241–285.

    Article  Google Scholar 

  51. H.J. Kushner, J. Yang and D. Jarvis, Controlled and optimally controlled multiplexing systems: A numerical exploration, Queueing Systems 20 (1995) 255–291.

    Article  Google Scholar 

  52. M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications (Marcel Dekker, New York, 1989).

    Google Scholar 

  53. I. Norros, A storage model with self-similar input, Queueing Systems 16 (1994) 387–396.

    Article  Google Scholar 

  54. N.U. Prabhu, Stochastic Storage Processes (Springer, New York, 1980).

    Google Scholar 

  55. Yu.V. Prohorov, Transient phenomena in queueing processes, Litovsk.Mat.Sb. 3 (1963) 199–206 (in Russian).

    Google Scholar 

  56. M.I. Reiman, Open queueing networks in heavy traffic, Math.Oper.Res. 9 (1984) 441–458.

    Article  Google Scholar 

  57. S. Resnick and H. Rootzén, Self-similar communication models and very heavy tails, Cornell University (1998).

  58. S. Resnick and G. Samorodnitsky, A heavy traffic limit theorem for workload processes with heavy tailed service requirements, Cornell University (1998).

  59. S. Resnick and E. van den Berg, Weak convergence of high-speed network traffic models, Cornell University (1999).

  60. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes (Chapman and Hall, New York, 1994).

    Google Scholar 

  61. A.V. Skorohod, Limit theorems for stochastic processes, Theor.Probab.Appl. 1 (1956) 261–290.

    Article  Google Scholar 

  62. L. Takács, Combinatorial Methods in the Theory of Stochastic Processes (Wiley, New York, 1967).

    Google Scholar 

  63. M.S. Taqqu, W. Willinger and R. Sherman, Proof of a fundamental result in self-similar traffic modeling, Comput.Commun.Rev. 27 (1997) 5–22.

    Article  Google Scholar 

  64. K.P. Tsoukatos and A.M. Makowski, Heavy-traffic analysis of a multiplexer driven by M/GI/1 input processes, in: Teletraffic Contributions for the Information Age, Proc.of ITC 15, eds.V. Ramaswami and P.E. Wirth (Elsevier, Amsterdam, 1997) pp.497–506.

    Google Scholar 

  65. K.P. Tsoukatos and A.M. Makowski, Heavy traffic limits associated with M/GI/1 input processes, Queueing Systems 34 (2000) 101–130.

    Article  Google Scholar 

  66. W. Whitt, Weak convergence theorems for priority queues: Preemptive-resume discipline, J.Appl.Probab. 8 (1971) 74–94.

    Article  Google Scholar 

  67. W. Whitt, Heavy traffic limits for queues: A survey, in: Proc.of Conf.on Mathematical Methods in Queueing Theory, Western Michigan University, ed. A.B. Clarke, Lecture Notes in Economics and Mathematical Systems, Vol.98 (Springer, New York, 1974) pp.307–350.

    Google Scholar 

  68. W. Whitt, Some useful functional limit theorems, Math.Oper.Res. 5 (1980) 67–85.

    Google Scholar 

  69. W. Whitt, Queues with superposition arrival processes in heavy traffic, Stochastic Process.Appl. 21 (1985) 81–91.

    Article  Google Scholar 

  70. W. Whitt, Limits for cumulative input processes to queues, Probab.Engrg.Inform.Sci. (2000) in press.

  71. W. Whitt, The reflection map with discontinuities, AT & T Labs (1999).

  72. R.J. Williams, An invariance principle for semimartingale reflecting Brownian motions in an orthant, Queueing Systems 30 (1998) 5–25.

    Article  Google Scholar 

  73. R.J. Williams, Diffusion approximations for open multiclass queueing networks: Sufficient conditions involving state space collapse, Queueing Systems 30 (1998) 27–88.

    Article  Google Scholar 

  74. W. Willinger, M.S. Taqqu, R. Sherman and D.V. Wilson, Self-similarity through high variability: Statistical analysis of Ethernent LAN traffic at the source level, IEEE/ACM Trans.Networking 5 (1997) 71–86.

    Article  Google Scholar 

  75. V.M. Zolotarev, The first passage time of a level and the behavior at infinity for a class of processes with independent increments, Theor.Probab.Appl. 9 (1964) 653–662.

    Article  Google Scholar 

  76. V.M. Zolotarev, One-Dimensional Stable Distributions, Vol.65 (Amer.Math.Soc., Providence, RI, 1986).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitt, W. An overview of Brownian and non-Brownian FCLTs for the single-server queue. Queueing Systems 36, 39–70 (2000). https://doi.org/10.1023/A:1019122901425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019122901425

Navigation