Skip to main content
Log in

Differential–algebraic equations in multibody system modeling

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Numerical methods for the efficient integration of both stiff and nonstiff equations of motion of multibody systems having the form of differential-algebraic equations (DAE) of index 3 are discussed. Linear multi-step ABM and BDF methods are considered for the non-iterational integration of nonstiff DAE. The Park method is proposed for integration of stiff equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Andrzejewski, H.G. Bock, E. Eich and R. von Schwerin, Recent advances in the numerical integration of multibody systems, in: Advanced Multibody System Dynamics - Simulation and Software Tools, ed. W. Schiehlen (Kluwer Academic, Dordrecht, 1993) pp. 127-151.

    Google Scholar 

  2. G.B. Efimov and D. Pogorelov, Some algorithms for computer-aided generation of multibody system equations, Preprint, Inst. Appl. Math. RAS 84, Moscow (1993) (in Russian).

  3. C. Fuhrer and B. Leimkuhler, Numerical solution of differential-algebraic equations for constrained mechanical motion, Numer. Math. 59 (1991) 55-69.

    Article  MathSciNet  Google Scholar 

  4. C.W. Gear, The simultaneous numerical solution of differential/algebraic equations, IEEE Trans. Circuit Theory 18 (1971) 89-95.

    Article  Google Scholar 

  5. C.W. Gear, G.K. Gupta and B. Leimkuhler, Automatic integration of Euler-Lagrange equations with constraints, J. Comput. Appl. Math. 12, 13 (1985) 77-90.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.D. Grigorieff, Numerik Gewöhnlicher Differentialgleichungen, Band 2, Mehrschrittverfahren (Teubner, Stuttgart, 1977).

    MATH  Google Scholar 

  7. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems (Springer, Berlin/Heidelberg/New York, 1996).

    MATH  Google Scholar 

  8. P. Lötstedt and L.R. Petzold, Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas, Math. Comput. 46 (1986) 491-516.

    Article  MATH  Google Scholar 

  9. K.C. Park, An improved stiffly stable method for direct integration of nonlinear structural dynamic equations, J. Appl. Mech. (June 1975) 464-470.

  10. D. Pogorelov, Numerical modelling of the motion of systems of solids, Comput. Math. Math. Phys. 35(4) (1995) 501-506.

    MATH  MathSciNet  Google Scholar 

  11. W. Schiehlen, ed., Multibody Systems Handbook (Springer, Berlin, 1990).

  12. L.F. Shampine, Numerical Solution of Ordinary Differential Equations (Chapman & Hall, New York, 1994).

    MATH  Google Scholar 

  13. L.F. Shampine and M.K. Gordon, Computer Solution of Ordinary Differential Equations, The Initial Value Problem (Freeman, San Francisco, CA, 1975).

    MATH  Google Scholar 

  14. R.A. Wehage and E.J. Haug, Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems, J. Mech. Design 104 (1982) 247-255.

    Article  Google Scholar 

  15. J. Wittenburg, Dynamics of Systems of Rigid Bodies (Teubner, Stuttgart, 1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogorelov, D. Differential–algebraic equations in multibody system modeling. Numerical Algorithms 19, 183–194 (1998). https://doi.org/10.1023/A:1019131212618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019131212618

Navigation