Skip to main content
Log in

Stable solution of tridiagonal systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we present three different pivoting strategies for solving general tridiagonal systems of linear equations. The first strategy resembles the classical method of Gaussian elimination with no pivoting and is stable provided a simple and easily checkable condition is met. In the second strategy, the growth of the elements is monitored so as to ensure backward stability in most cases. Finally, the third strategy also uses the right‐hand side vector to make pivoting decisions and is proved to be unconditionally backward stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bar-On, B. Codenotti and M. Leoncini, Checking robust non-singularity of a general tridiagonal matrix in linear time, BIT 36 (1996) 206–220.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Bar-On and M. Leoncini, Well-defined tridiagonal systems, Manuscript (April 1996).

  3. I. Bar-On and M. Leoncini, Fast and reliable parallel solution of bidiagonal systems, Technical Report B4-96-08, Istituto di Matematica Computazionale del CNR Pisa (1996), submitted to Numer. Math.

    Google Scholar 

  4. I. Bar-On and M. Leoncini, Reliable sequential algorithms for solving bidiagonal systems of linear equations, Technical Report B4-96-04, Istituto di Matematica Computazionale del CNR, Pisa (1996), submitted to BIT with the title Reliable solution of bidiagonal systems with applications.

    Google Scholar 

  5. W.W. Barret, A theorem on inverses of tridiagonal matrices, Linear Algebra Appl. 27 (1979) 211–217.

    Article  MathSciNet  Google Scholar 

  6. A. Bjorck, Iterative refinement and reliable computing, in: Reliable Numerical Computation, eds. M.G. Cox and S.J. Hammarling (Oxford Univer. Press, Oxford, 1989).

    Google Scholar 

  7. C. de Boor and A. Pinkus, Backward error analysis for totally positive linear systems, Numer. Math. 27 (1977) 485–490.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.R. Bunch, Partial pivoting strategies for symmetric matrices, Numer. Math. 11 (1974) 521–528.

    MATH  MathSciNet  Google Scholar 

  9. T.F. Chan, On the existence and computation of LU-factorization with small pivots, Math. Comp. 42 (1985) 535–547.

    Article  Google Scholar 

  10. A.M. Cohen, A note on pivot size in Gaussian elimination, Linear Algebra Appl. 8 (1974) 361–368.

    Article  MATH  Google Scholar 

  11. C.W. Cryer, Pivot size in Gaussian elimination, Numer. Math. 12 (1968) 335–345.

    Article  MATH  MathSciNet  Google Scholar 

  12. C.W. Cryer, The LU-factorization of totally positive matrices, Linear Algebra Appl. 7 (1973) 83–92.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Demmel, The componentwise distance to the nearest singular matrix, SIAM J. Matrix Anal. Appl. 13 (1992) 10–19.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Dhillon, Reliable computation of the condition number of a tridiagonal matrix in O(n) time, SIAM J. Matrix Anal. Appl. (1998).

  15. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 1989).

    Google Scholar 

  16. M.D. Gunzburger and R.A. Nicolaides, Stability of Gaussian elimination without pivoting on tridiagonal Toeplitz matrices, Linear Algebra Appl. 45 (1982) 21–28.

    Article  MATH  MathSciNet  Google Scholar 

  17. W.J. Harrod, LU-decomposition of tridiagonal irreducible H matrices, SIAM J. Alg. Discrete Methods 7 (1986) 180–187.

    MATH  MathSciNet  Google Scholar 

  18. D.J. Higham and N.J. Higham, Large growth factors in Gaussian elimination with pivoting, SIAM J. Matrix Anal. Appl. 10 (1989) 155–164.

    Article  MATH  MathSciNet  Google Scholar 

  19. N.J. Higham, Bounding the error in Gaussian elimination for tridiagonal systems, SIAM J. Matrix Anal. Appl. (1990) 521–530.

  20. N.J. Higham, Algorithm 694: A collection of test matrices in MATLAB, ACM Trans. Math. Software 17 (1991) 289–305.

    Article  MATH  MathSciNet  Google Scholar 

  21. N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, PA, 1995).

    MATH  Google Scholar 

  22. M. Jankowski and H. Wozniakowski, Iterative refinement implies numerical stability, BIT 17 (1977) 303–311.

    Article  MATH  MathSciNet  Google Scholar 

  23. C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, NJ, 1974).

    MATH  Google Scholar 

  24. G. Meurant, A review on the inverse of of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal. Appl. (1992) 707–728.

  25. W. Oettli and W. Prager, Computability of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numer. Math. 6 (1964) 405–409.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals Systems 6 (1993) 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  27. S.M. Rump, Bounds for the componentwise distance to the nearest singular matrix, SIAM J. Matrix Anal. Appl. 18 (1997) 83–103.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Sigmon, Matlab Primer 4e (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  29. R.D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach. 26 (1979) 494–526.

    MATH  MathSciNet  Google Scholar 

  30. R.D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math. Comp. 35 (1980) 817–832.

    Article  MATH  MathSciNet  Google Scholar 

  31. J.H. Wilkinson, Error analysis of direct method of matrix inversion, J. Assoc. Comput. Mach. 8 (1961) 281–330.

    MATH  MathSciNet  Google Scholar 

  32. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford Univ. Press, Oxford, 1965), Reprinted in Oxford Science Publications (1988).

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar‐On, I., Leoncini, M. Stable solution of tridiagonal systems. Numerical Algorithms 18, 361–388 (1998). https://doi.org/10.1023/A:1019137919461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019137919461

Navigation