Skip to main content
Log in

The impact of a heavy-tailed service-time distribution upon the M/GI/s waiting-time distribution

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

By exploiting an infinite-server-model lower bound, we show that the tails of the steady-state and transient waiting-time distributions in the M/GI/s queue with unlimited waiting room and the first-come first-served discipline are bounded below by tails of Poisson distributions. As a consequence, the tail of the steady-state waiting-time distribution is bounded below by a constant times the sth power of the tail of the service-time stationary-excess distribution. We apply that bound to show that the steady-state waiting-time distribution has a heavy tail (with appropriate definition) whenever the service-time distribution does. We also establish additional results that enable us to nearly capture the full asymptotics in both light and heavy traffic. The difference between the asymptotic behavior in these two regions shows that the actual asymptotic form must be quite complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abate, G.L. Choudhury and W. Whitt, Waiting-time tail probabilities in queues with long-tail service-time distributions, Queueing Systems 16 (1994) 311–338.

    Article  Google Scholar 

  2. J. Abate and W. Whitt, Asymptotics for M/G/1 low-priority waiting-time tail probabilities, Queueing Systems 25 (1997) 173–233.

    Article  Google Scholar 

  3. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1972).

    Google Scholar 

  4. S. Asmussen, Stochastic Simulation with a View towards Stochastic Processes, Lecture Notes No.2 (MaPhySto, Centre for Mathematical Physics and Stochastics, University of Aarhus, Denmark, 1999).

    Google Scholar 

  5. S. Asmussen, O. Nerman and M. Olsson, Fitting phase type distributions via the EM algorithm, Scand.J.Statist. 23 (1996) 419–441.

    Google Scholar 

  6. S. Asmussen, H. Schmidli and V. Schmidt, Tail probabilities for non-standard risk and queueing processes with subexponential jumps, Dept.Math.Stat., Lund University, Sweden (1997).

    Google Scholar 

  7. D. Bertsimas, An exact FCFS waiting time analysis for a general class of G/G/s queueing systems, Queueing Systems 3 (1988) 305–320.

    Article  Google Scholar 

  8. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  9. A.A. Borovkov, Stochastic Processes in Queueing Theory (Springer, New York, 1976) (translation of 1972 Russian book).

    Google Scholar 

  10. O.J.Boxma, Q.Deng and A.P.Zwart, Waiting-time asymptotics for the M/G/2 queue with heterogeneous servers, unpublished manuscript, CWI, Amsterdam.

  11. D.Y. Burman and D.R. Smith, A light-traffic theorem for multi-server queues, Math.Oper.Res. 8 (1983) 15–25.

    Google Scholar 

  12. G.L. Choudhury and W. Whitt, Long-tail buffer-content distributions in broadband networks, Performance Evaluation 30 (1996) 177–190.

    Article  Google Scholar 

  13. J.W. Cohen, Some results on regular variation for distributions in queueing and fluctuations theory, J.Appl.Probab. 10 (1973) 343–353.

    Article  Google Scholar 

  14. N.G. Duffield and W. Whitt, Control and recovery from rare congestion events in a large multi-server system, Queueing Systems 26 (1997) 69–104.

    Article  Google Scholar 

  15. S.G. Eick, W.A. Massey and W. Whitt, The physics of the M t /G/1/∞ queue, Oper.Res. 41 (1993) 731–742.

    Article  Google Scholar 

  16. A. Erdélyi, Asymptotic Expansions (Dover, New York, 1956).

    Google Scholar 

  17. A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models, Performance Evaluation 31 (1998) 245–279.

    Article  Google Scholar 

  18. W. Feller, An Introduction to Probability Theory and its Applications, Vol.II, 2nd ed. (Wiley, New York, 1971).

    Google Scholar 

  19. C.M. Goldie and C. Klüppelberg, Subexponential distributions, in: A Practical Guide to Heavy Tails: Statistical Techniques for Analyzing Heavy Tailed Distributions, eds.R. Adler, R. Feldman and M.S. Taqqu (Birkhauser, Boston, 1998) pp.435–459.

    Google Scholar 

  20. L.V. Green, A limit theorem on subintervals of interrenewal times, Oper.Res. 30 (1982) 210–216.

    Google Scholar 

  21. A.G. Greenberg, R. Srikant and W. Whitt, Resource sharing for book-ahead and intermediate-request calls, IEEE/ACM Trans.Networking 7 (1999) 10–22.

    Article  Google Scholar 

  22. P.R. Jelenković and A.A. Lazar, Subexponential asymptotics of a Markov-modulated random walk with queueing applications, J.Appl.Probab. 35 (1998) 325–347.

    Article  Google Scholar 

  23. C. Klüppelberg, Subexponential distributions and integrated tails, J.Appl.Probab. 25 (1988) 132–141.

    Article  Google Scholar 

  24. D.A.Korshunov, On waiting-time distribution in GI/G/2 queueing system with heavy tailed service times, unpublished manuscript.

  25. W.A. Massey and W. Whitt, Peak congestion in multi-server service systems with slowly varying arrival rates, Queueing Systems 25 (1997) 157–172.

    Article  Google Scholar 

  26. A.G. Pakes, On the tails of waiting-time distributions, J.Appl.Probab. 12 (1975) 555–564.

    Article  Google Scholar 

  27. A. Scheller-Wolf and K. Sigman, Delay moments for FIFO GI/GI/s queues, Queueing Systems 25 (1997) 77–95.

    Article  Google Scholar 

  28. L.P. Seelen, An algorithm for Ph/Ph/c queues, European J.Oper.Res. 23 (1986) 118–127.

    Article  Google Scholar 

  29. J.H.A. de Smit, A numerical solution for the multi-server queue with hyperexponential service times, Oper.Res.Lett. 2 (1983) 217–224.

    Article  Google Scholar 

  30. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models (Wiley, New York, 1983).

    Google Scholar 

  31. L. Takács, Introduction to the Theory of Queues (Oxford Univ. Press, New York, 1962).

    Google Scholar 

  32. W. Whitt, Embedded renewal processes in the GI/G/s queue, J.Appl.Probab. 9 (1972) 650–658.

    Article  Google Scholar 

  33. W. Whitt, On stochastic bounds for the delay distribution in the GI/G/s queue, Oper.Res. 29 (1981) 604–608.

    Google Scholar 

  34. W. Whitt, Comparing counting processes and queues, Adv.in Appl.Probab. 13 (1981) 207–220.

    Article  Google Scholar 

  35. W. Whitt, Comparison conjectures about the GI/G/s queue, Oper.Res.Lett. 2 (1983) 203–210.

    Article  Google Scholar 

  36. R.W. Wolff, An upper bound for multi-channel queues, J.Appl.Probab. 14 (1977) 884–888.

    Article  Google Scholar 

  37. R.W. Wolff, Poisson arrivals see time averages, Oper.Res. 30 (1982) 223–231.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitt, W. The impact of a heavy-tailed service-time distribution upon the M/GI/s waiting-time distribution. Queueing Systems 36, 71–87 (2000). https://doi.org/10.1023/A:1019143505968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019143505968

Navigation