Abstract
Many problems of practical interest can be modeled by differential systems where the solution lies on an invariant manifold defined explicitly by algebraic equations. In computer simulations, it is often important to take into account the invariant's information, either in order to improve upon the stability of the discretization (which is especially important in cases of long time integration) or because a more precise conservation of the invariant is needed for the given application. In this paper we review and discuss methods for stabilizing such an invariant. Particular attention is paid to post-stabilization techniques, where the stabilization steps are applied to the discretized differential system. We summarize theoretical convergence results for these methods and describe the application of this technique to multibody systems with holonomic constraints. We then briefly consider collocation methods which automatically satisfy certain, relatively simple invariants. Finally, we consider an example of a very long time integration and the effect of the loss of symplecticity and time-reversibility by the stabilization techniques.
Similar content being viewed by others
References
T. Alishenas, Zur numerischen Behandlung, Stabilisierung durch Projektion und Modellierung mechanischer Systeme mit Nebenbedingungen und Invarianten, PhD thesis, Institut für Numerische Analysis und Informatik, Königliche Technische Hochschule, S-100 44 Stockholm, Sweden (1992).
Th. Andrzejewski, G. Bock, E. Eich and R. von Schwerin, Recent advances in the numerical integration of multibody systems, in: Advanced Multibody System Dynamics, ed. W. Schiehlen (Kluwer, 1993) pp. 127–152.
U. Ascher and G. Bader, Stability of collocation at Gaussian points, SIAM J. Numer. Anal. 23 (1986) 412–422.
U. Ascher, H. Chin, L. Petzold and S. Reich, Stabilization of constrained mechanical systems with DAEs and invariant manifolds, J. Mech. Struct. Machines 23 (1995) 135–158.
U. Ascher, H. Chin and S. Reich, Stabilization of DAEs and invariant manifolds, Numer. Math. 67 (1994) 131–149.
U. Ascher and P. Lin, Sequential regularization methods for nonlinear higher index DAEs, SIAM J. Sci. Comput., to appear.
U. Ascher and L. Petzold, Projected implicit Runge-Kutta methods for differential-algebraic equations, SIAM J. Numer. Anal. 28 (1991) 1097–1120.
U. Ascher and L. Petzold, Stability of computational methods for constrained dynamics systems, SIAM J. Sci. Comput. 14 (1993) 95–120.
J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comp. Methods Appl. Mech. 1 (1972) 1–16.
H. G. Bock and R. V. Schwerin, An inverse dynamics Adams-method for constrained multibody systems, Technical Report, IWR Universität Heidelberg (June, 1993).
K. Brenan, S. Campbell and L. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (North-Holland, Amsterdam, 1989).
M. Calvo and E. Hairer, Accurate long term integration of dynamical saystems, APNUM 18 (1995) 95–105.
M. P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows, Technical Report, DAMTP (Cambridge, 1995).
H. Chin, Stabilization methods for simulations of constrained multibody dynamics, PhD thesis, Institute of Applied Mathematics, University of British Columbia, Canada (1995).
G. J. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal. 7 (1987) 1–13.
L. Dieci, R. D. Russell and E.S. van Vleck, Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Numer. Anal. 31 (1994) 261–281.
E. Eich, Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints, SIAM J. Numer. Anal. 30 (1993) 1467.
E. Eich, K. Fuhrer, B. Leimkuhler and S. Reich, Stabilization and projection methods for multibody dynamics, Technical Report, Inst. Math., Helsinki Univ. of Technology (1990).
K. Fuhrer and B. Leimkuhler, Numerical solution of differential-algebraic equations for constrained mechanical motion, Numer. Math. 59 (1991) 55–69.
C. W. Gear, The simultaneous numerical solution of differential-algebraic equations, IEEE Trans. Circuit Theory CT-18 (1971) 89–95.
C. W. Gear, Maintaining solution invariants in the numerical solution of odes, SIAM J. Sci. Statist. Comput. 7 (1986) 734–743.
C. W. Gear, Differential-algebraic equations, indices and integral algebraic equations, SIAM J. Numer. Anal. 27 (1990).
C. W. Gear, H. H. Hsu and L. Petzold, Differential-algebraic equations revisited, in: Proc. ODE Meeting (Oberwolfach, West Germany, 1981).
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, volume Second, Revised Edition (Springer, 1993).
E. Hairer and D. Stoffer, Reversible long term integration with variable step sizes, Technical Report, Technical Report U (Geneva, 1995).
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer, Berlin, 1991).
S. Herzel, M. Recchioni and F. Zirilli, A quadratically convergent method for linear programming, Linear. Algebra Appl. 152 (1991) 255–289.
B. Leimkuhler and R. Skeel, Symplectic integrators in constrained Hamiltonian systems, J. Comput. Phys. 112 (1994) 117–125.
L. Petzold, Differential/algebraic equations are not ODEs, SIAM J. Sci. Statist. Comput. 3 (1982) 367–384.
F. Potra and W. Rheinboldt, On the numerical solution of the Euler-Langrange equations, Mech. Structures Mach. 1 (1991).
S. Reich, Enhanced energy conserving methods, BIT 36 (1996) 122–134.
W. C. Rheinboldt, Differential-algebraic systems as differential equations on manifolds, Math. Comp. 43 (1984) 473–482.
J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems (Chapman and Hall, London, 1994).
L. F. Shampine, Conservation laws and the numerical solution of ODEs, Comp. Maths. Appls., Part b 12 (1986) 1287–1296.
R. A. Wehage and E. J. Haug, Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems, J. of Mechanical Design 104 (1982) 247–255.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ascher, U.M. Stabilization of invariants of discretized differential systems. Numerical Algorithms 14, 1–24 (1997). https://doi.org/10.1023/A:1019144409525
Issue Date:
DOI: https://doi.org/10.1023/A:1019144409525