Skip to main content
Log in

Theory of formal integrability and DAEs: effective computations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper deals with the computation of the formally integrable systems underlying a given quasi-linear polynomial DAE. We use as stopping condition the criterium of differential stability, which happens to be equivalent to the formal integrability in dimension 1. A symbolic method is developed to compute effectively a finite collection of so-called triangular stable DAEs, whose solutions are precisely all the solutions of the initial system. Besides, this algorithm enables to determine the generic points of a triangular DAE, by checking the non-nullity of a single polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Boulier, Etude et implémentation de quelques algorithmes en algèbre différentielle, Ph.D. thesis, Université des Sciences et Technologies de Lille (1994).

  2. F. Boulier, D. Lazard, F. Ollivier and M. Petitot, Representation for the radical of a finitely generated differential ideal, in: Proc. of ISSAC' 95, Montréal, ed. T. Levelt (ACM Press, New York, 1995) pp. 158-166.

    Google Scholar 

  3. T. Becker and V. Weispfenning, Gröbner Bases, a Computational Approach to Commutative Algebra, Graduate Texts in Mathematics 141 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  4. S.L. Campbell, The numerical solution of higher index linear time varying singular systems of differential equations, SIAM J. Sci. Statist. Comput. 6 (1988) 334-348.

    Article  Google Scholar 

  5. S.L. Campbell and C.W. Gear, The index of general nonlinear DAEs, J. Numer. Math. 72(2) (1995) 173-196.

    Article  MATH  MathSciNet  Google Scholar 

  6. C.W. Gear, Differential-algebraic equations index transformations, SIAM J. Sci. Statist. Comput. 9 (1988) 39-47.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Goldschmidt, Existence theorems for analytic linear PDEs, Ann. Math. 86 (1962) 246-270.

    Article  MathSciNet  Google Scholar 

  8. M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems, Amer. J. Math. 79 (1957) 1-47.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Lazard, Letter (November 1996).

  10. Y.O. Macutan, Geometry of differential equations and formal integrability theory, Technical Report RT170, LMC-IMAG, Grenoble (1997).

    Google Scholar 

  11. B. Malgrange, Equations de Lie II, J. Differential Geom. 7 (1972) 117-141.

    MATH  MathSciNet  Google Scholar 

  12. O.-P. Piirilä, J. Tuomela and G. LeVey, Differential-algebraic systems and formal integrability, Research Report A326, Helsinki University of Technology (1993).

  13. M.-P. Quéré and G. Villard, An algorithm for the reduction of linear DAE, in: Proc. of ISSAC' 95, ed. A.H.M. Levelt (ACM Press, New York, 1995) pp. 223-231.

    Google Scholar 

  14. P.J. Rabier, Implicit differential equations near a singular point, J. Math. Anal. Appl. 144 (1988) 425-449.

    Article  MathSciNet  Google Scholar 

  15. P.J. Rabier and W.C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations, J. Differential Equations 109 (1994) 110-146.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.J. Rabier and W.C. Rheinboldt, On impasse points of quasilinear differential-algebraic equations, J. Math. Anal. Appl. 181 2 (1994) 429-454.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Reich, On an existence and uniqueness theory for nonlinear differential-algebraic equations, Circuits Systems Signal Process. 10(3) (1991) 343-359.

    Article  MATH  MathSciNet  Google Scholar 

  18. G.J. Reid, P. Lin and A.D. Wittkopf, Differential elimination-completion algorithms for DAE and PDAE, preprint (1996).

  19. J.F. Ritt, Differential Algebra (Amer. Mathematical Soc., Providence, RI, 1950).

    MATH  Google Scholar 

  20. D.C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1965) 1-114.

    Google Scholar 

  21. G. Thomas, Symbolic computation of the differential index of quasi-linear DAEs, in: ACM Proc. of ISSAC' 96, ed. Y. Lakshmann (ETH, Zürich, 1996) pp. 196-203.

    Google Scholar 

  22. G. Thomas, Contributions à l'étude des équations différentielles-algébriques: Approche par le calcul formel, Thèse INP, Grenoble (1997).

    Google Scholar 

  23. J. Tuomela, On singular points of quasilinear differential and differential-algebraic equations, preprint, Institute of Mathematics, Helsinki University of Technology (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macutan, Y., Thomas, G. Theory of formal integrability and DAEs: effective computations. Numerical Algorithms 19, 147–157 (1998). https://doi.org/10.1023/A:1019162624913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019162624913

Navigation