Skip to main content
Log in

Position versus momentum projections for constrained Hamiltonian systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the effect of position and momentum projections in the numerical integration of constrained Hamiltonian systems. We show theoretically and numerically that momentum projections are better and more efficient. They lead to smaller error growth rates and affect the energy error much less, as they define a canonical transformation. As a concrete example, the planar pendulum is treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Alishenas, Zur numerischen Behandlung, Stabilisierung durch Projektion und Modellierung mechanischer Systeme mit Nebenbedingungen und Invarianten, Ph.D. thesis, Dept. of Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm, Sweden (1992).

    Google Scholar 

  2. T. Alishenas and Ö. Ólafsson, Modeling and velocity stabilization of constrained mechanical systems, BIT 34 (1994) 455-483.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Brasey and E. Hairer, Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2, SIAM J. Numer. Anal. 30 (1993) 538-552.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Brasey and E. Hairer, Symmetrized half-explicit methods for constrained mechanical systems, Appl. Numer. Math. 13 (1993) 23-31.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Brauchli, Mass-orthogonal formulation of equations of motion for multibody systems, Z. Angew. Math. Phys. 42 (1991) 169-182.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Carathéodory, Variationsrechnung und Partielle Differentialgleichungen erster Ordnung, Band I (Teubner, Leipzig, 1956).

    Google Scholar 

  7. E. Eich, C. Führer, B. Leimkuhler and S. Reich, Stabilization and projection methods for multibody dynamics, Research Report A281, Helsinki University of Technology, Institute of Mathematics (1990).

  8. H. Goldstein, Classical Mechanics (Addison-Wesley, New York, 1980).

    Google Scholar 

  9. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer Series in Computational Mathematics 14 (Springer, Berlin, 1996).

    Google Scholar 

  10. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton Univ. Press, 1992).

  11. B.J. Leimkuhler and S. Reich, Symplectic integration of constrained Hamiltonian systems, Math. Comput. 63 (1994) 589-605.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Reich, Symplectic integration of constrained Hamiltonian systems by composition methods, SIAM J. Numer. Anal. 33 (1996) 475-491.

    Article  MATH  MathSciNet  Google Scholar 

  13. W.M. Seiler, Impetus-striction formalism and the numerical integration of constrained Hamiltonian systems (1998), in preparation.

  14. W.M. Seiler, Numerical integration of constrained Hamiltonian systems using Dirac brackets, Math. Comput. (1998), to appear.

  15. B. Simeon, MBSPACK - numerical integration software for constrained mechanical motion, Surv. Math. Ind. 5 (1995) 169-202.

    MATH  MathSciNet  Google Scholar 

  16. M. Sofer, O. Melliger and H. Brauchli, Numerical behaviour of different formulations for multibody dynamics, in: Numerical Methods in Engineering' 92, eds. C. Hirsch, O.C. Zienkiewicz and E. Oñate (Elsevier, Amsterdam, 1992) pp. 277-284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, W.M. Position versus momentum projections for constrained Hamiltonian systems. Numerical Algorithms 19, 223–234 (1998). https://doi.org/10.1023/A:1019170926730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019170926730

Navigation