Skip to main content
Log in

A KDD framework to support database audit

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

Understanding data semantics from real-life databases is considered following an audit perspective: it must help experts to analyse what properties actually hold in the data and support the comparison with desired properties. This is a typical problem of knowledge discovery in databases (KDD) and it is specified within the framework of Mannila and Toivonen where data mining consists in querying theories e.g., the theories of approximate inclusion dependencies. This formalization enables us to identify an important subtask to support database audit as well as a generic algorithm. Next, we consider the DREAM relational database reverse engineering method and DREAM heuristics are revisited within this new setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Batini, S. Ceri and S. Navathe, Conceptual Database Design: An Entity-Relationship Approach (Benjamin Cummings, 1997).

  2. S. Bell, Discovering rules in relational databases for semantic query optimisation, in: Proc. PADD'97, Practical Application Company (1997) pp. 79–90.

  3. J-F. Boulicaut, M. Klemettinen and H. Mannila, Querying inductive databases: A case study on the MINE RULE operator, in: Proc. PKDD'98, LNAI 1510, Springer-Verlag (1998) pp. 194–202.

  4. R.H.L. Chiang, T.M. Barron and V.C. Storey, Reverse engineering of relational databases: extraction of an EER model from a relational database, Data & Knowledge Engineering 10(12) (1994) 107–142.

    Article  Google Scholar 

  5. R.H.L. Chiang, T.M. Barron and V.C. Storey, A framework for the design and evaluation of reverse engineering methods for relational databases, Data & Knowledge Engineering 21 (1996) 53–77.

    Article  Google Scholar 

  6. C. Chua, R.H.L. Chiang and E-P. Lim, Instance-based attribute identification in database integration, in: Proc. WITS'98, eds. S.T. March and J. Bubenko Jr., pp. 147-156.

  7. L. de Raedt and L. Dehaspe, Clausal discovery, Machine Learning 26 (2) (1997) 99–146.

    Article  Google Scholar 

  8. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds.), Advances in Knowledge Discovery and Data Mining (AAAI Press, 1996).

  9. Y. Huhtala, J. Kärkkäinen, P. Porkka and H. Toivonen, Efficient discovery of functional and approximate dependencies using partitions, in: Proc. ICDE'98 (IEEE Computer Society Press, 1998) pp. 392–401.

  10. P. Johannesson, A method for translating relational schemas into conceptual structures, in: Proc. ICDE'94 (IEEE Computer Society Press, 1994) pp. 190–201.

  11. H. Mannila and H. Toivonen, Levelwise search and borders of theories in knowledge discovery, Data Mining and Knowledge Discovery 1(3) (1997) 241–258.

    Article  Google Scholar 

  12. H. Mannila, Methods and problems in data mining, in: Proc. ICDT'97, LNCS 1186, Springer-Verlag (1997) pp. 41–55.

  13. H. Mannila and K.-J. Räihä, The Design of Relational Databases (Addison-Wesley, 1992).

  14. V.M. Markowitz and J.A. Makowsky, Identifying extended entity-relationship object structures in relational schemas, IEEE Trans. on Software Engineering 16(8) (1990) 777–790.

    Article  Google Scholar 

  15. R. Meo, G. Psaila and S. Ceri, A new SQL-like operator for mining association rules, in: Proc. VLDB'96 (1996).

  16. J.-M. Petit, J. Kouloumdjian, J.-F. Boulicaut and F. Toumani, Usign queries to improve database reverse engineering, in: Proc. ER'94, LNCS 881, Springer-Verlag (1994) pp. 369–386.

  17. J.-M. Petit, F. Toumani, J.-F. Boulicaut and J. Kouloumdjian, Towards the reverse engineering of denormalized relational databases, in: Proc. ICDE'96 (IEEE Computer Society Press, 1996) pp. 218–227.

  18. W.J. Premerlani and M. Blaha, An approach for reverse engineering of relational databases, Communications of the ACM 37(5) 1994 42–49.

    Article  Google Scholar 

  19. O. Signore, M. Loffredo, M. Gregori and M. Cima, Reconstruction of ER schema from database applications: A cognitive approach, in: Proc. ER'94, LNCS 881, Springer-Verlag (1994) pp. 387–402.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulicaut, JF. A KDD framework to support database audit. Information Technology and Management 1, 195–207 (2000). https://doi.org/10.1023/A:1019173008480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019173008480

Navigation