Skip to main content
Log in

Stability of a three‐station fluid network

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper studies the stability of a three‐station fluid network. We show that, unlike the two‐station networks in Dai and Vande Vate [18], the global stability region of our three‐station network is not the intersection of its stability regions under static buffer priority disciplines. Thus, the “worst” or extremal disciplines are not static buffer priority disciplines. We also prove that the global stability region of our three‐station network is not monotone in the service times and so, we may move a service time vector out of the global stability region by reducing the service time for a class. We introduce the monotone global stability region and show that a linear program (LP) related to a piecewise linear Lyapunov function characterizes this largest monotone subset of the global stability region for our three‐station network. We also show that the LP proposed by Bertsimas et al. [1] does not characterize either the global stability region or even the monotone global stability region of our three‐station network. Further, we demonstrate that the LP related to the linear Lyapunov function proposed by Chen and Zhang [11] does not characterize the stability region of our three‐station network under a static buffer priority discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bertsimas, D. Gamarnik and J.N. Tsitsiklis, Stability conditions for multiclass fluid queueing networks, IEEE Trans. Automat. Control 41 (1996) 1618-1631. Correction: 42 (1997) 128.

    Google Scholar 

  2. D.D. Botvich and A.A. Zamyatin, Ergodicity of conservative communication networks, Rapport de recherche 1772, INRIA (1992).

  3. M. Bramson, Instability of FIFO queueing networks, Ann. Appl. Probab. 4 (1994) 414-431.

    Google Scholar 

  4. M. Bramson, Instability of FIFO queueing networks with quick service times, Ann. Appl. Probab. 4 (1994) 693-718.

    Google Scholar 

  5. M. Bramson, Convergence to equilibria for fluid models of FIFO queueing networks, Queueing Systems 22 (1996) 5-45.

    Article  Google Scholar 

  6. M. Bramson, Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks, Queueing Systems 23 (1997) 1-26.

    Article  Google Scholar 

  7. M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems 28 (1998) 7-31.

    Article  Google Scholar 

  8. M. Bramson, A stable queueing network with unstable fluid network, Ann. Appl. Probab. (1998) to appear.

  9. H. Chen, Fluid approximations and stability of multiclass queueing networks I: Work-conserving disciplines, Ann. Appl. Probab. 5 (1995) 637-665.

    Google Scholar 

  10. H. Chen and H. Zhang, Stability of multiclass queueing networks under FIFO service discipline, Math. Oper. Res. 22 (1997) 691-725.

    Google Scholar 

  11. H. Chen and H. Zhang, Stability of multiclass queueing networks under priority service disciplines, Oper. Res. (1998) to appear.

  12. J.G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, Ann. Appl. Probab. 5 (1995) 49-77.

    Google Scholar 

  13. J.G. Dai, Stability of open multiclass queueing networks via fluid models, in: Stohastic Networks, eds. F. Kelly and R.J. Williams, The IMA Volumes in Mathematics and its Applications, Vol. 71 (Springer, New York, 1995) pp. 71-90.

    Google Scholar 

  14. J.G. Dai, A fluid-limit model criterion for instability of multiclass queueing networks, Ann. Appl. Probab. 6 (1996) 751-757.

    Article  Google Scholar 

  15. J.G. Dai and S.P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit model, IEEE Trans. Automat. Control 40 (1995) 1889-1904.

    Article  Google Scholar 

  16. J.G. Dai and J. Vande Vate, Global stability of two-station queueing networks, in: Proc.of Workshop on Stochastic Networks: Stability and Rare Events, eds. P.K.S. Glasserman and D. Yao, Columbia University, Lecture Notes in Statistics, Vol. 117 (Springer, New York, 1996) pp. 1-26.

    Google Scholar 

  17. J.G. Dai and J. Vande Vate, Virtual stations and the capacity of two-station queueing networks, (1996), under revision for Oper. Res.

  18. J.G. Dai and J. Vande Vate, The stability of two-station multi-type fluid networks, Oper. Res. (1998) to appear.

  19. J.G. Dai and G. Weiss, Stability and instability of fluid models for re-entrant lines, Math. Oper. Res. 21 (1996) 115-134.

    Article  Google Scholar 

  20. D. Down and S. Meyn, Piecewise linear test functions for stability of queueing networks, in: Proc. of the 33rd Conf.on Decision and Control (1994) pp. 2069-2074.

  21. D. Down and S.P. Meyn, Piecewise linear test functions for stability and instability of queueing networks, Queueing Systems 27 (1997) 205-226.

    Article  Google Scholar 

  22. V. Dumas, A multiclass network with nonlinear, nonconvex, nonmonotonic stability conditions, Queueing Systems 25 (1997) 1-43.

    Article  Google Scholar 

  23. P. Dupuis and R.J. Williams, Lyapunov functions for semimartingale reflecting Brownian motions, Ann. Probab. 22 (1994) 680-702.

    Google Scholar 

  24. S. Foss and A. Rybko, Stability of multiclass Jackson-type networks, preprint (1995).

  25. J.J. Hasenbein, Necessary conditions for global stability of multiclass queueing networks, Oper. Res. Lett. 21 (1997) 87-94.

    Article  Google Scholar 

  26. C. Humes, Jr., A regulator stabilization technique: Kumar-Seidman revisited, IEEE Trans. Automat. Control 39 (1994) 191-196.

    Article  Google Scholar 

  27. P.R. Kumar and S.P. Meyn, Stability of queueing networks and scheduling policies, IEEE Trans. Automat. Control 40 (1995) 251-260.

    Article  Google Scholar 

  28. P.R. Kumar and S. Meyn, Duality and linear programs for stability and performance analysis of queueing networks and scheduling policies, IEEE Trans. Automat. Control 41 (1996) 4-17.

    Article  Google Scholar 

  29. P.R. Kumar and T.I. Seidman, Dynamic instabilities and stabilization methods in distributed realtime scheduling of manufacturing systems, IEEE Trans. Automat. Control 35 (1990) 289-298.

    Article  Google Scholar 

  30. S.H. Lu and P.R. Kumar, Distributed scheduling based on due dates and buffer priorities, IEEE Trans. Automat. Control 36 (1991) 1406-1416.

    Article  Google Scholar 

  31. S.P. Meyn, Transience of multiclass queueing networks via fluid limit models, Ann. Appl. Probab. 5 (1995) 946-957.

    Google Scholar 

  32. A.N. Rybko and A.L. Stolyar, Ergodicity of stochastic processes describing the operation of open queueing networks, Problems Inform. Transmission 28 (1992) 199-220.

    Google Scholar 

  33. T.I. Seidman, ‘First come, first served’ can be unstable!, IEEE Trans. Automat. Control 39 (1994) 2166-2171.

    Article  Google Scholar 

  34. A.L. Stolyar, On the stability of multiclass queueing networks: a relaxed sufficient condition via limiting fluid processes, Markov Processes Related Fields (1995) 491-512.

  35. G.L. Winograd and P.R. Kumar, The FCFS service discipline: Stable network topologies, bounds on traffic burstiness and delay, and control by regulators, Math. Comput. Modeling 23 (1996) 115-129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, J., Hasenbein, J. & Vande Vate, J. Stability of a three‐station fluid network. Queueing Systems 33, 293–325 (1999). https://doi.org/10.1023/A:1019184331042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019184331042

Navigation