Skip to main content
Log in

Solving stable generalized Lyapunov equations with the matrix sign function

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We investigate the numerical solution of the stable generalized Lyapunov equation via the sign function method. This approach has already been proposed to solve standard Lyapunov equations in several publications. The extension to the generalized case is straightforward. We consider some modifications and discuss how to solve generalized Lyapunov equations with semidefinite constant term for the Cholesky factor. The basic computational tools of the method are basic linear algebra operations that can be implemented efficiently on modern computer architectures and in particular on parallel computers. Hence, a considerable speed-up as compared to the Bartels–Stewart and Hammarling methods is to be expected. We compare the algorithms by performing a variety of numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.D.O. Anderson and J.B. Moore, Optimal Control – Linear Quadratic Methods (Prentice-Hall, Englewood Cliffs, NJ, 1990).

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users' Guide, 2nd ed. (SIAM, Philadelphia, PA, 1995).

    Google Scholar 

  3. Z. Bai and J. Demmel, Design of a parallel nonsymmetric eigenroutine toolbox, Part I, in: Proc. of the 6th SIAM Conf. on Parallel Processing for Scientific Computing, eds. R.F. Sincovec et al. (1993).

  4. Z. Bai and J. Demmel, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Anal. Appl. 19(1) (1998) 205–225.

    Google Scholar 

  5. R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX + XB = C: Algorithm 432, Commun. ACM 15 (1972) 820–826.

    Google Scholar 

  6. A.N. Beavers and E.D. Denman, A new solution method for the Lyapunov matrix equations, SIAM J. Appl. Math. 29 (1975) 416–421.

    Google Scholar 

  7. P. Benner, Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems (Logos, Berlin, 1997). Also: Dissertation, Fakultät für Mathematik, TU Chemnitz-Zwickau (1997).

    Google Scholar 

  8. P. Benner and R. Byers, An exact line search method for solving generalized continuous-time algebraic Riccati equations, IEEE Trans. Automat. Control 43(1) (1998) 101–107.

    Google Scholar 

  9. P. Benner, A.J. Laub and V. Mehrmann, A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case, Technical Report SPC 95/22, Fakultät für Mathematik, TU Chemnitz-Zwickau, Germany (1995). Available from http://www.tu-chemnitz.de/sfb393/spc95pr.html.

    Google Scholar 

  10. P. Benner and E.S. Quintana-Ortí, Solving stable generalized Lyapunov equations with the matrix sign function, Technical Report SFB393/97-23, Fakultät für Mathematik, TU Chemnitz-Zwickau, Germany (1997). Available from http://www.tu-chemnitz. de/sfb393/sfb97pr.html.

    Google Scholar 

  11. R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl. 85 (1987) 267–279.

    Google Scholar 

  12. R. Byers, C. He and V. Mehrmann, The matrix sign function method and the computation of invariant subspaces, SIAM J. Matrix Anal. Appl. 18(3) (1997) 615–632.

    Google Scholar 

  13. E.D. Denman and A.N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput. 2 (1976) 63–94.

    Google Scholar 

  14. J.D. Gardiner, Stabilizing control for second-order models and positive real systems, AIAA J. Guidance, Dynamics and Control 15(1) (1992) 280–282.

    Google Scholar 

  15. J.D. Gardiner and A.J. Laub, A generalization of the matrix-sign-function solution for algebraic Riccati equations, Internat. J. Control 44 (1986) 823–832.

    Google Scholar 

  16. J.D. Gardiner, A.J. Laub, J.J. Amato and C.B. Moler, Solution of the Sylvester matrix equation AXB + CXD = E, ACM Trans. Math. Software 18 (1992) 223–231.

    Google Scholar 

  17. G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, MD, 1996).

    Google Scholar 

  18. S.J. Hammarling, Newton's method for solving the algebraic Riccati equation, NPL Report DITC 12/82, National Physical Laboratory, Teddington, Middlesex, UK (1982).

    Google Scholar 

  19. S.J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation, IMA J. Numer. Anal. 2 (1982) 303–323.

    Google Scholar 

  20. U. Helmke and J.B. Moore, Optimization and Dynamical Systems (Springer, London, 1994).

    Google Scholar 

  21. N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, PA, 1996).

    Google Scholar 

  22. W.D. Hoskins, D.S. Meek and D.J. Walton, The numerical solution of A0Q + QA = –C, IEEE Trans. Automat. Control 22 (1977) 882–883.

    Google Scholar 

  23. C. Kenney and A.J. Laub, The matrix sign function, IEEE Trans. Automat. Control 40(8) (1995) 1330–1348.

    Google Scholar 

  24. P. Lancaster and L. Rodman, The Algebraic Riccati Equation (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  25. P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed. (Academic Press, Orlando, 1985).

    Google Scholar 

  26. V.B. Larin and F.A. Aliev, Construction of square root factor for solution of the Lyapunov matrix equation, Systems Control Lett. 20 (1993) 109–112.

    Google Scholar 

  27. I. Lewkowicz, Convex invertible cones of matrices – a unified framework for equations of Sylvester, Lyapunov and Riccati, Dept. Elec. Comp. Eng., Ben-Gurion University, Israel (1997).

    Google Scholar 

  28. V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, Lecture Notes in Control and Information Sciences, Vol. 163 (Springer, Heidelberg, 1991).

    Google Scholar 

  29. P. Misra, P. Van Dooren and A. Varga, Computation of structural invariants of generalized state-space systems, Automatica 30(12) (1994) 1921–1936.

    Google Scholar 

  30. T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math. 8 (1997) 33–48.

    Google Scholar 

  31. P.H. Petkov, N.D. Christov and M.M. Konstantinov, Computational Methods for Linear Control Systems (Prentice-Hall, Hertfordshire, UK, 1991).

    Google Scholar 

  32. J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control 32 (1980) 677–687. (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971.)

    Google Scholar 

  33. I.G. Rosen and C. Wang, A multi-level technique for the approximate solution of operator Lyapunov and algebraic Riccati equations, SIAM J. Numer. Anal. 32(2) (1995) 514–541.

    Google Scholar 

  34. M.G. Safonov and R.Y. Chiang, Model reduction for robust control: A Schur relative error method, Internat. J. Adapt. Control Signal Process. 2 (1998) 259–272.

    Google Scholar 

  35. G. Schelfhout, Model reduction for control design, Ph.D. thesis, Dept. Electrical Engineering, KU Leuven, Belgium (1996).

    Google Scholar 

  36. V. Sima, Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathematics, Vol. 200 (Marcel Dekker, New York, 1996).

    Google Scholar 

  37. A. Varga and T. Katayama, Computation of J-inner–outer factorizations of rational matrices, Internat. J. Robust Nonlinear Control 8 (1998) 245–263.

    Google Scholar 

  38. J.H. Wilkinson, Rounding Errors in Algebraic Processes (Prentice-Hall, Englewood Cliffs, NJ, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Quintana-Ortí, E.S. Solving stable generalized Lyapunov equations with the matrix sign function. Numerical Algorithms 20, 75–100 (1999). https://doi.org/10.1023/A:1019191431273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019191431273

Navigation