Skip to main content
Log in

Implementation of a variable block Davidson method with deflation for solving large sparse eigenproblems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Davidson method is a preconditioned eigenvalue technique aimed at computing a few of the extreme (i.e., leftmost or rightmost) eigenpairs of large sparse symmetric matrices. This paper describes a software package which implements a deflated and variable-block version of the Davidson method. Information on how to use the software is provided. Guidelines for its upgrading or for its incorporation into existing packages are also included. Various experiments are performed on an SGI Power Challenge and comparisons with ARPACK are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anderson et al., LAPACK User's Guide (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  2. G. Cisneros and C.F. Bunge, An improved computer program for eigenvectors and eigenvalues of large configuration interaction matrices using the algorithm of Davidson, Comput. Chemistry 8(8) (1986) 157–160.

    Google Scholar 

  3. M. Crouzeix, B. Philippe and M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15(1) (1994) 62–76.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization, Math. Comp. 30(136) (1976) 772–795.

    Article  MATH  MathSciNet  Google Scholar 

  5. E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Comput. Phys. 17 (1975) 87–94.

    Article  MATH  MathSciNet  Google Scholar 

  6. I.S. Duff, R.G. Grimes and J.G. Lewis, Sparse matrix test problems, ACM Trans. Math. Software 15 (1989) 1–4.

    Article  MATH  Google Scholar 

  7. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed. (Johns Hopkins University Press, Baltimore, MD, 1989).

    Google Scholar 

  8. A. Jennings and W.J. Stewart, A simultaneous iteration algorithm for real matrices, ACM Trans. Math. Software 7(2) (1981) 184–198.

    Article  MATH  MathSciNet  Google Scholar 

  9. M.T. Jones and P.E. Plassmann, An improved incomplete Cholesky factorization, ACM Trans. Math. Software 21(1) (1995) 6–17.

    MathSciNet  Google Scholar 

  10. M.T. Jones and P.E. Plassmann, Algorithm 740: Fortran subroutines to compute improved incomplete Cholesky factorizations, ACM Trans. Math. Software 21(1) (1995) 18–19.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Kosugi, Modification of the Liu–Davidson method for obtaining one or simultaneously several eigensolutions of a large real-symmetric matrix, Comput. Phys. 55 (1984) 426–436.

    Article  MATH  Google Scholar 

  12. R.B. Lehoucq, Analysis and implementation of an implicitly restarted Arnoldi iteration, Ph.D. thesis, Department of Computational and Applied Mathematics, Rice University (1995).

  13. R.B. Lehoucq and J.A. Scott, An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices, Technical Report MCS-P547-1195, Argonne National Lab. (1996).

  14. R.B. Lehoucq, D.C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi methods (SIAM, Philadephia, PA, 1998).

    Google Scholar 

  15. B. Liu, The simultaneous expansion for the solution of several of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, in: Numerical Algorithms in Chemistry: Algebraic Method, eds. C. Moler and I. Shavitt (LBL-8158 Lawrence Berkeley Lab., 1978) pp. 49–53.

  16. K. Meerbergen and M. Sadkane, Using Krylov approximations to the matrix exponential operator in Davidson's method, to appear in Appl. Numer. Math.

  17. R.B. Morgan and D.S. Scott, Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Statist. Comput. 7(3) (1986) 817–825.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computation, version 2, Technical Report, Computer Science Department, University of Minnesota, Minneapolis, MN.

  19. Y. Saad, Numerical Methods for Large Eigenvalue Problems, Algorithms and Architectures for Advanced Scientific Computing (Manchester University Press, Manchester, UK, 1992).

    Google Scholar 

  20. M. Sadkane, Block Arnoldi and Davidson methods for unsymmetric large eigenvalue problems, Numer. Math. 64 (1993) 195–211.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.B. Sidje, EXPOKIT: Software package for computing matrix exponentials, ACM Trans. Math. Software 24(1) (1998) 130–156.

    Article  MATH  Google Scholar 

  22. G.L.G. Sleijpen and H.A. Van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996) 401–425.

    Article  MATH  MathSciNet  Google Scholar 

  23. D.C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13 (1992) 357–385.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Stathopoulos and C.F. Fischer, A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix, Comput. Phys. Comm. 79(2) (1994) 268–290.

    Article  MATH  Google Scholar 

  25. J. Weber, R. Lacroix and G. Wanner, The eigenvalue problem in configuration interaction calculations: a computer program based on a new derivation of the algorithm of Davidson, Comput. Chemistry 4(2) (1980) 55–60.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadkane, M., Sidje, R.B. Implementation of a variable block Davidson method with deflation for solving large sparse eigenproblems. Numerical Algorithms 20, 217–240 (1999). https://doi.org/10.1023/A:1019199700323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019199700323

Navigation