Skip to main content
Log in

On some structured inverse eigenvalue problems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This work deals with various finite algorithms that solve two special Structured Inverse Eigenvalue Problems (SIEP). The first problem we consider is the Jacobi Inverse Eigenvalue Problem (JIEP): given some constraints on two sets of reals, find a Jacobi matrix J (real, symmetric, tridiagonal, with positive off-diagonal entries) that admits as spectrum and principal subspectrum the two given sets. Two classes of finite algorithms are considered. The polynomial algorithm which is based on a special Euclid–Sturm algorithm (Householder's terminology) and has been rediscovered several times. The matrix algorithm which is a symmetric Lanczos algorithm with a special initial vector. Some characterization of the matrix ensures the equivalence of the two algorithms in exact arithmetic. The results of the symmetric situation are extended to the nonsymmetric case. This is the second SIEP to be considered: the Tridiagonal Inverse Eigenvalue Problem (TIEP). Possible breakdowns may occur in the polynomial algorithm as it may happen with the nonsymmetric Lanczos algorithm. The connection between the two algorithms exhibits a similarity transformation from the classical Frobenius companion matrix to the tridiagonal matrix. This result is used to illustrate the fact that, when computing the eigenvalues of a matrix, the nonsymmetric Lanczos algorithm may lead to a slow convergence, even for a symmetric matrix, since an outer eigenvalue of the tridiagonal matrix of order n − 1 can be arbitrarily far from the spectrum of the original matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ammar and W.B. Gragg, O(n2) reduction algorithms for the construction of a band matrix form spectral data, SIMAX 12 (1991) 426–431.

    MATH  MathSciNet  Google Scholar 

  2. S. Barnett, A new look at classical algorithms for polynomial resultant and gcd calculation, SIAM Review 16 (1974) 193–206.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Barnett, A companion matrix analogue for orthogonal polynomials, Linear Algebra Appl. 12 (1975) 197–208.

    Article  MATH  MathSciNet  Google Scholar 

  4. D.L. Boley and G.H. Golub, Inverse eigenvalue problems for band matrices, in: Lecture Notes on Mathematics, Numerical Analysis (Springer, Berlin, 1977).

    Google Scholar 

  5. C. De Boor and G.H. Golub, The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl. 21 (1978) 245–260.

    Article  MATH  MathSciNet  Google Scholar 

  6. D.L. Boley and G.H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems 3 (1987) 595–622.

    Article  MATH  MathSciNet  Google Scholar 

  7. F.W. Biegler-Konig, Construction of the band matrices from spectral data, Linear Algebra Appl. 40 (1981) 79–84.

    Article  MathSciNet  Google Scholar 

  8. M. Ben-Or, M. Feig, D. Kozen and P. Tiwari, A fast parallel algorithm for determining all roots of a polynomial with real roots, SIAM J. Comput. 17 (1988) 1081–1092.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Ben-Or and P. Tiwari, Simple algorithms for approximating all roots of a polynomial with real roots, J. Complexity 6 (1990) 417–442.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Barnett and D.D. Siljak, Routh's algorithm: a centennial survey, SIAM Review 19 (1977) 472–489.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Chebyshev, Sur les fractions continues, J. Math. Pures Appl. Série II 3 (1858) 289–323.

    Google Scholar 

  12. P. Chebyshev, Sur l'interpolation par la méthode des moindres carrés, Mém. Acad. Imp. des Sci. St. Petersbourg, Série 7 1 (1859) 1–24.

    Google Scholar 

  13. G.E. Collins, Subresultants and reduced polynomial remainder sequence and determinants, J. ACM 14 (1967) 128–142.

    Article  MATH  Google Scholar 

  14. A.C. Downing and A.S. Householder, Some inverse characteristic value problem, J. ACM 3 (1956) 203–207.

    Article  MathSciNet  Google Scholar 

  15. R. Erra, Sur quelques problèmes inverses structurés de valeurs propres et de valeurs singulières, Ph.D. thesis in Computer Science, University of Rennes I (March 1996).

  16. M. Fiedler, Expressing a polynomial as the caracteristic polynomial of a symmetric matrix, Linear Algebra Appl. 141 (1990) 265–270.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Friedland, J. Nocedal and M.L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems, SINUM 24(3) (1987) 634–667.

    MATH  MathSciNet  Google Scholar 

  18. S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl. 17 (1977) 15–51.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Friedland, The reconstruction of a symmetric matrix from the spectral data, J. Math. Anal. Appl. 71 (1979) 412–422.

    Article  MATH  MathSciNet  Google Scholar 

  20. F.R. Gantmacher, Theory of Matrices, Vol. 2 (Chelsea, New York, 1959).

  21. W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982) 289–317.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Gautschi, Orthogonal polynomials-constructive theory and applications, J. Comput. Appl. Math. 12 (1985) 61–76.

    Article  MATH  MathSciNet  Google Scholar 

  23. M.H. Gutknecht and W.B. Gragg, Stable look-ahead versions of the Euclidean and Chebyshev algorithms, Technical report, IPS-ETH, Zurich (1994).

  24. W.B. Gragg and W.J. Harrod, The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math. 44 (1984) 317–335.

    Article  MATH  MathSciNet  Google Scholar 

  25. F.R. Gantmacher and M.G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Transl. US A.E.C., report AEC Tr 4481 (1961; English translation of the book published, in 1950 in Russian, and in 1960 in German).

  26. L.J. Gray and D.G. Wilson, Construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 14 (1976) 131–134.

    Article  MATH  MathSciNet  Google Scholar 

  27. O. Hald, Inverse eigenvalue problems for Jacobi matrix, Linear Algebra Appl. 14 (1976) 63–85.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Hochstadt, On some inverse problems in matrix theory, Archiv. der Math. 18 (1967) 201–207.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 8 (1974) 435–446.

    Article  MATH  MathSciNet  Google Scholar 

  30. Householder, The Theory of Matrices in Numerical Analysis (Blaisdell, New York, 1964).

    MATH  Google Scholar 

  31. A.S. Householder, Bigradiants and the Euclid–Sturm algorithm, Siam Review 16(2) (1974) 207–213.

    Article  MATH  MathSciNet  Google Scholar 

  32. R.O. Hill and B.N. Parlett, Refined interlacing properties, SIMAX 13 (1992) 239–247.

    MATH  MathSciNet  Google Scholar 

  33. Jacobson, Basic Algebra, Vol. 2 (Freeman, San Fransisco, 1974).

    Google Scholar 

  34. M. Krein and M. Naimark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (1981) 265–308. (Originally published in Russian in 1936.)

    MATH  MathSciNet  Google Scholar 

  35. D.E. Knuth, Seminumerical Algorithms, Vol. 2 of The Art of Computer Programming (Addison-Wesley, Reading, MA, 2nd edn., 1981).

    Google Scholar 

  36. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. of Stand. 45 (1950) 255–281.

    MathSciNet  Google Scholar 

  37. M. Mattis and H. Hochstadt, On the construction of band symmetric matrices from spectral data, Linear Algebra Appl. 38 (1981) 109–119.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Mignotte, Mathematics for Computer Algebra (Springer, 1991).

  39. B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    MATH  Google Scholar 

  40. B.N. Parlett, Reduction to tridiagonal form and minimal realization, SIMAX 13(2) (1992) 567–597.

    MATH  MathSciNet  Google Scholar 

  41. Parlett, Taylor and Liu, A look ahead Lanczos algorithm for unsymmetric matrices, Math. Comp. 44(169) (1985) 105–124.

    Article  MATH  MathSciNet  Google Scholar 

  42. L. Reichel, Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation, SIMAX 12(3) (1991) 552–564.

    MATH  MathSciNet  Google Scholar 

  43. H. Rutishauser, On Jacobi rotation patterns, in: Experimental Arithmetic, High Speed Computing and Mathematics, Proc. Symp. Appl. Math. 15 (Amer. Math. Soc., Providence, 1963).

  44. Rutishauser, Lectures on Numerical Mathematics (Birkhäuser, 1990).

  45. H.R. Schwarz, Ein Verfahren zur Stabilitätsfrage bei Matrizen-Eigenwerte-Problem, Z. Angw. Math. Phys. 7 (1956) 473–500.

    Article  MATH  Google Scholar 

  46. G. Schmeisser, A real symmetric tridiagonal matrix with a given characteristic polynomial, Linear and Multilinear Algebra 193 (1993) 11–18.

    MATH  MathSciNet  Google Scholar 

  47. D.S. Scott, How to make the Lanczos algorithm converge slowly, Math. Comp. 33(145) (1979) 239–247.

    Article  MATH  MathSciNet  Google Scholar 

  48. T.J. Stieltjes, Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. Ecole Normale Paris, Série 3 1 (1884) 409–426.

    MATH  MathSciNet  Google Scholar 

  49. J. Sturm, Mémoire sur la résolution des équations numériques, Mémoires présentés par divers savants à l'Académie Royale des Sciences, Sciences Mathématiques et Physiques 6 (1835) 271–318.

    Google Scholar 

  50. H.S. Wall, Analytic Theory of Continued Fractions (Chelsea, New York, 1948).

    MATH  Google Scholar 

  51. B. Wendroff, On orthogonal polynomials, Proc. Amer. Math. Soc. 12 (1961) 554–555.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erra, R., Philippe, B. On some structured inverse eigenvalue problems. Numerical Algorithms 15, 15–35 (1997). https://doi.org/10.1023/A:1019202301522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019202301522

Navigation