Skip to main content
Log in

Computation of Janet Bases for Toric Ideals

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

An algorithm for computation of Janet bases for toric ideals, which is based on the structure of the Janet tree, is suggested. The algorithm can be applied, in particular, to solving integer programming problems with the use of algorithmic ideas by Conti and Traverso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Conti, P. and Traverso, C., Buchberger Algorithm and Integer Programming, Proc. AAECC-9, LNCS, 1991, vol. 539, pp. 130-139.

    Google Scholar 

  2. Pottier, L., Groebner Bases of Toric Ideals, Rapport de recherche 2224, 1997, INRIA, Sophia Antipolis.

    Google Scholar 

  3. Di Biase, F. and Urbanke, R., An Algorithm to Calculate the Kernel of Certain Polynomial Ring Homomorphisms, Exp. Math., 1995, vol. 4, pp. 227-234.

    Google Scholar 

  4. Hosten, S. and Sturmfels, B., GRIN: An Implementation of Groebner Basis for Integer Programming, Integer Programming and Combinatorial Optimization, LNCS, 1995, vol. 920, pp. 267-276.

    Google Scholar 

  5. Bigatti, A.M., La Scala, R., and Robbiano, L., Computing Toric Ideals, J. Symbol. Comp., 1999, vol. 27, pp. 351-365.

    Google Scholar 

  6. Zharkov, A.Yu. and Blinkov, Yu.A., Involutive Systems of Algebraic Equations, Programmirovanie, 1994, no. 1, pp. 53-56.

  7. Apel, J., Gröbner Approach to Involutive Bases, J. Symbol. Comp., 1995, vol. 19, pp. 441-458.

    Google Scholar 

  8. Gerdt, V.P. and Blinkov, Yu.A., Involutive Bases of Polynomial Ideals, Math. Comp. Simul., 1998, vol. 45, pp. 519-542.

    Google Scholar 

  9. Gerdt, V.P. and Blinkov, Yu.A., Involutive Divisions of Monomials, Programmirovanie, 1998, no. 6, pp. 22-24.

  10. Chen, Yu-Fu and Gao, X.-Sh., Vector Representation of Involutive Divisions, Mathematics-Mechanization Research Preprints, Beijing, 1999, no. 18, pp. 9-22.

  11. Gerdt, V.P., Blinkov, Yu.A., and Yanovich, D.A., Construction of Janet Bases II. Polynomial Bases, Proc. of CASC'01, Berlin: Springer, 2001, pp. 249-263.

    Google Scholar 

  12. Blinkov, Yu.A., Method of Separative Monomials for Involutive Divisions, Programmirovanie, 2001, no. 3, pp. 43-45.

  13. Gerdt, V.P., Yanovich, D., and Blinkov, Yu.A., Fast Search for the Janet Divisor, Programmirovanie, 2001, no. 1, pp. 32-36.

  14. Gerdt, V.P., Blinkov, Yu.A., and Yanovich, D.A., Construction of Janet Bases I. Monomial Bases, Proc. of CASC'01, Berlin: Springer, 2001, pp. 233-247.

    Google Scholar 

  15. Janet, M., Leçons sur les Systèmes d'Equations aux Dérivées Partielles, Cahiers Scientifiques, IV, Paris: Gauthier-Villars, 1929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinkov, Y.A. Computation of Janet Bases for Toric Ideals. Programming and Computer Software 28, 290–292 (2002). https://doi.org/10.1023/A:1020264212943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020264212943

Keywords

Navigation