Skip to main content
Log in

Bicartesian Coherence

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Coherence is demonstrated for categories with binary products and sums, but without the terminal and the initial object, and without distribution. This coherence amounts to the existence of a faithful functor from a free category with binary products and sums to the category of relations on finite ordinals. This result is obtained with the help of proof-theoretic normalizing techniques. When the terminal object is present, coherence may still be proved if of binary sums we keep just their bifunctorial properties. It is found that with the simplest understanding of coherence this is the best one can hope for in bicartesian categories. The coherence for categories with binary products and sums provides an easy decision procedure for equality of arrows. It is also used to demonstrate that the categories in question are maximal, in the sense that in any such category that is not a preorder all the equations between arrows involving only binary products and sums are the same. This shows that the usual notion of equivalence of proofs in nondistributive conjunctive-disjunctive logic is optimally defined: further assumptions would make this notion collapse into triviality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cockett, J. R. B., ‘Introduction to distributive categories’, Mathematical Structures in Computer Science 3 (1993), 277-307.

    Google Scholar 

  2. Cockett, J. R. B., and R. A. G. Seely, ‘Finite sum-product logic’, Theory and Application of Categories 8 (2001), 63-99 (preliminary draft, March 2000).

    Google Scholar 

  3. DoŠen, K., and Z. PetriĆ, ‘The maximality of cartesian categories’, Mathematical Logic Quarterly 47 (2001), 137-144 (available at: http://xxx.lanl.gov/math.CT/9911059).

    Google Scholar 

  4. DoŠen, K., and Z. PetriĆ, ‘The maximality of the typed lambda calculus and of cartesian closed categories’, Publications de l'Institut Mathématique (N.S.) 68(82) (2000), 1-19 (available at: http://xxx.lanl.gov/math.CT/9911073).

    Google Scholar 

  5. DoŠen, K., and Z. PetriĆ, ‘Coherent bicartesian and sesquicartesian categories’, R. Kahle et al. (eds.), Proof Theory in Computer Science, Lecture Notes in Computer Science 2183, Springer, Berlin, 2001, pp. 78-92 (available at: http://xxx.lanl.gov/math.CT/0006091).

    Google Scholar 

  6. Eckmann, B., and P. J. Hilton, ‘Group-like structures in general categories I: Multiplication and comultiplication’, Mathematische Annalen 145 (1962), 227-255.

    Google Scholar 

  7. Eilenberg, S., and G. M. Kelly, ‘A generalization of the functorial calculus’, Journal of Algebra 3 (1966), 366-375.

    Google Scholar 

  8. Kelly, G. M., and S. Mac Lane, ‘Coherence in closed categories’, Journal of Pure and Applied Algebra 1 (1971), 97-140, 219.

    Google Scholar 

  9. Kelly, G. M., ‘An abstract approach to coherence’, in [16], pp. 106-147.

    Google Scholar 

  10. Lambek, J., ‘Deductive systems and categories I: Syntactic calculus and residuated categories’, Mathematical Systems Theory 2 (1968), 287-318.

    Google Scholar 

  11. Lambek, J., ‘Deductive systems and categories II: Standard constructions and closed categories’, in Category Theory, Homology Theory and their Applications I, Lecture Notes in Mathematics 86, Springer, Berlin 1969, pp. 76-122.

    Google Scholar 

  12. Lambek, J., ‘Deductive systems and categories III: Cartesian closed categories, intuitionist propositional calculus, and combinatory logic’, in F. W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics 274, Springer, Berlin 1972, pp. 57-82.

    Google Scholar 

  13. Lambek, J., and P. J. Scott, Introduction to Higher-Order Categorical Logic, Cambridge University Press, Cambridge 1986.

    Google Scholar 

  14. Lambek, F. W., and S. H. Schanuel, Conceptual Mathematics: A First Introduction to Categories, Cambridge University Press, Cambridge 1997 (first edition: Buffalo Workshop Press, Buffalo 1991).

    Google Scholar 

  15. Mac Lane, S., ‘Natural associativity and commutativity’, Rice University Studies, Papers in Mathematics 49 (1963), 28-46.

    Google Scholar 

  16. Mac Lane, S., (ed.), Coherence in Categories, Lecture Notes in Mathematics 281, Springer, Berlin 1972.

    Google Scholar 

  17. Mints, G. E., ‘Category theory and proof theory (in Russian)’, in Aktual'nye voprosy logiki i metodologii nauki, Naukova Dumka, Kiev 1980, pp. 252-278 (English translation, with permuted title, in G. E. Mints, Selected Papers in Proof Theory, Bibliopolis, Naples 1992).

    Google Scholar 

  18. PetriĆ, Z., ‘Coherence in substructural categories’, Studia Logica 70 (2002), 271-296.

    Google Scholar 

  19. Rebagliato, J., and V. VerdÚ, ‘On the algebraization of some Gentzen systems’, Fundamenta Informaticae 18 (1993), 319-338.

    Google Scholar 

  20. Simpson, A. K., ‘Categorical completeness results for the simply-typed lambdacalculus’, in M. Dezani-Ciancaglini and G. Plotkin (eds.), Typed Lambda Calculi and Applications (Edinburgh, 1995), Lecture Notes in Computer Science 902, Springer, Berlin 1995, pp. 414-427.

    Google Scholar 

  21. Szabo, M. E., ‘A categorical equivalence of proofs’, Notre Dame Journal of Formal Logic 15 (1974), 177-191.

    Google Scholar 

  22. Szabo, M. E., ‘A counter-example to coherence in cartesian closed categories’, Canadian Mathematical Bulletin 18 (1975), 111-114.

    Google Scholar 

  23. Szabo, M. E., Algebra of Proofs, North-Holland, Amsterdam 1978.

    Google Scholar 

  24. Szabo, M. E., ‘Coherence in cartesian closed categories and the generality of proofs’, Studia Logica 48 (1989), 285-297.

    Google Scholar 

  25. Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, Cambridge 1996.

    Google Scholar 

  26. Zach, R., ‘Completeness before Post: Bernays, Hilbert and the development of propositional logic’, The Bulletin of Symbolic Logic 5 (1999), 331-366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Došen, K., Petrić, Z. Bicartesian Coherence. Studia Logica 71, 331–353 (2002). https://doi.org/10.1023/A:1020568830946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020568830946

Navigation