Skip to main content
Log in

Multiobjective optimization of combinatorial libraries

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Combinatorial chemistry and high-throughput screening have caused a fundamental shift in the way chemists contemplate experiments. Designing a combinatorial library is a controversial art that involves a heterogeneous mix of chemistry, mathematics, economics, experience, and intuition. Although there seems to be little agreement as to what constitutes an ideal library, one thing is certain: only one property or measure seldom defines the quality of the design. In most real-world applications, a good experiment requires the simultaneous optimization of several, often conflicting, design objectives, some of which may be vague and uncertain. In this paper, we discuss a class of algorithms for subset selection rooted in the principles of multiobjective optimization. Our approach is to employ an objective function that encodes all of the desired selection criteria, and then use a simulated annealing or evolutionary approach to identify the optimal (or a nearly optimal) subset from among the vast number of possibilities. Many design criteria can be accommodated, including diversity, similarity to known actives, predicted activity and/or selectivity determined by quantitative structure-activity relationship (QSAR) models or receptor binding models, enforcement of certain property distributions, reagent cost and availability, and many others. The method is robust, convergent, and extensible, offers the user full control over the relative significance of the various objectives in the final design, and permits the simultaneous selection of compounds from multiple libraries in full- or sparse-array format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, L.A. and Ellman, J.A., Chem. Rev., 96 (1996) 555–600.

    Google Scholar 

  2. Pareto, V., Manual of Political Economy, 1906, p. 106.

  3. Eschenauer, H.A., Koski, J. and Osyczka, A., Multicriteria Design Optimization: Procedures and Applications, Springer-Verlag, New York (1986).

    Google Scholar 

  4. Martin, E.J., Blaney, J.M., Siani, M.A., Spellmeyer, D.C., Wong, A.K. and Moos, W.H., J. Med. Chem. 38, (1995) 1431–1436.

    Google Scholar 

  5. Agrafiotis, D.K., Bone, R.F., Salemme, F.R. and Soll, R.M., U.S. Patents 5,463,564, (1995); 5,574,656, (1996); 5,684,711, (1997); and 5,901,069, (1999).

  6. Sheridan, R.P. and Kearsley, S.K., J. Chem. Inf. Comput. Sci. 35 (1995) 310–320.

    Google Scholar 

  7. Weber, L., Wallbaum, S., Broger, C. and Gubernator, K., Angew. Chem. Int. Ed. Eng., 34 (1995) 2280–2282.

    Google Scholar 

  8. Singh, J., Ator, M.A., Jaeger, E.P., Allen, M.P., Whipple, D.A., Soloweij, J.E., Chowdhary, S. and Treasurywala, A.M., J. Amer. Chem. Soc., 118 (1996) 1669–1676.

    Google Scholar 

  9. Agrafiotis, D.K., Stochastic Algorithms for Maximizing Molecular Diversity, presented at the 3rd Electronic Computational Chemistry Conference, http://hackberry.chem.niu.edu/ECCC3/paper 48, (1996).

  10. Agrafiotis, D.K., J. Chem. Inf. Comput. Sci., 37 (1997) 841–851.

    Google Scholar 

  11. Agrafiotis, D.K., J. Chem. Inf. Comput. Sci., 37 (1997) 576–580.

    Google Scholar 

  12. Agrafiotis, D.K. and Lobanov, V.S., J. Chem. Inf. Comput. Sci., 39 (1999) 51–58.

    Google Scholar 

  13. Hassan, M., Bielawski, J.P., Hempel, J.C. and Waldman, M., Mol. Diversity, 2 (1996) 64–74.

    Google Scholar 

  14. Waldman, M., Li, H. and Hassan, M., Novel Algorithms for the Optimization of Molecular Diversity of Combinatorial Libraries, J. Mol. Graphics Mod., 18 (2000) 412–426.

    Google Scholar 

  15. Good, A.C. and Lewis, R.A., J. Med. Chem., (1997) 40 3926.

    Google Scholar 

  16. Zheng, W., Cho, S.J. and Tropsha, A., J. Chem. Inf. Comput. Sci., 27 (1998) 251.

    Google Scholar 

  17. Brown, R.D. and Martin, Y.C., J. Med. Chem., 40 (1997) 2304–2313.

    Google Scholar 

  18. Gillet, F.J., Willett, P., Bradshaw, J. and Green, D.V.S., J. Chem. Inf. Comput. Sci., 39 (1999) 169–177.

    Google Scholar 

  19. Rassokhin, D.N. and Agrafiotis, D.K., J. Mol. Graphics Mod., 18 (2000) 370–384.

    Google Scholar 

  20. Brown, R.D., Hassan, M. and Waldman, M., J. Mol. Graphics Mod., 18 (2000) 427–437.

    Google Scholar 

  21. Sheridan, R.P., SanFeliciano, S.G. and Kearsley, S.K., J. Mol. Graphics Mod., 18 (2000) 320–334.

    Google Scholar 

  22. Downs, G.M. and Willett, P., J. Chem. Inf. Comput. Sci., 34 (1994) 1094–1102.

    Google Scholar 

  23. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1996) 572–584.

    Google Scholar 

  24. Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D. and Weinberger, L.E., J. Med. Chem., 39 (1996) 3049–3059.

    Google Scholar 

  25. Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 37 (1997) 1–9.

    Google Scholar 

  26. Matter, H., J. Med. Chem., 40 (1997) 1219.

    Google Scholar 

  27. Martin, Y.C., Bures, M.G. and Brown, R.D., Pharm. Pharmacol. Common.,4 (1998) 147.

    Google Scholar 

  28. Gillet, V.J., Willett, P. and Bradshaw, J., J. Chem. Inf. Comput. Sci., 37 (1997) 731–740.

    Google Scholar 

  29. Jamois, E.A., Hassan, M. and Waldman, M., J. Chem. Inf. Comput. Sci., 40 (2000) 63–70.

    Google Scholar 

  30. Polinsky, A., Feinstien, R.D., Shi, S. and Kuki, A., In Chaiken, I.M. and Janda, K.D. (Eds.), Molecular Diversity and Combinatorial Chemistry, American Chemical Society: Washington, DC, (1996) pp. 219–232.

    Google Scholar 

  31. Martin, E.J., Spellmeyer, D.C., Critchlow, R.E. and Blaney, J.M., In: Lipkowitz, K.B. and Boyd, D.B. (Eds.), Does Combinatorial Chemistry Obviate Computer-Aided Drug Design? Reviews in Computational Chemistry, Volume 10, VCH Publishers, New York, (1997) pp. 75–100.

    Google Scholar 

  32. Willett, P., Similarity and Clustering in Chemical Information Systems, Research Studies Press, Letchworth, UK, (1987).

    Google Scholar 

  33. Taylor, R., J. Chem. Inf. Comput. Sci., 35 (1995) 59–67.

    Google Scholar 

  34. Chapman, D., J. Comput.-Aided Mol. Design, 10 (1996) 501–512.

    Google Scholar 

  35. Cummins, D.J., Andrews, C.W., Bentley, J.A. and Cory, M., J. Chem. Inf. Comput. Sci., 36 (1996) 750–763.

    Google Scholar 

  36. Pearlman, R.S. and Smith, R.S., Perspect. Drug Discovery Design, 9 (1998) 339–353.

    Google Scholar 

  37. Pickett, S., Mason, J.S. and McLay, I.M., J. Chem. Inf. Comput. Sci., 36 (1996) 1214–1223.

    Google Scholar 

  38. Davies, E.K. and Briant, C., Network Sci., (1995) http://www.awod.com/netsci/issues/

  39. Shemetulsksis, N.E., Weininger, D., Blankley, C.J., Yang, J.J. and Humblet, C., J. Chem. Inf. Comput. Sci., 36 (1996) 862–871.

    Google Scholar 

  40. Boyd, S.M., Beverly, M., Norskov, L. and Hubbard, R.E., J. Comput.-Aided Mol. Design, 9 (1995) 417–424.

    Google Scholar 

  41. Agrafiotis, D.K. and Lobanov, V.S., J. Chem. Inf. Comput. Sci., 40 (2000) 1030–1038.

    Google Scholar 

  42. Stanton, R.V., Mount, J. and Miller, J.L., J. Chem. Inf. Comput. Sci., 40 (2000) 701–705.

    Google Scholar 

  43. Agrafiotis, D.K., in Schleyer, P.v.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer III, H.F. and Schreiner, P.R. (Eds.), The Diversity of Chemical Libraries, The Encyclopedia of Computational Chemistry, John Wiley & Sons, Chichester, UK, (1998) pp. 742–761.

    Google Scholar 

  44. Agrafiotis, D.K., Myslik, J.C. and Salemme, F.R., Mol. Diversity, 4 (1999) 1–22.

    Google Scholar 

  45. Agrafiotis, D.K., Lobanov, V.S., Rassokhin, D.N. and Izrailev, S., In: Böhm, H.-J. and Schneider, G. (Eds.), The Measurement of Molecular Diversity, Virtual Screening of Bioactive Molecules, Wiley-VCH Verlag GmbH, Weinheim, Germany, (2000).

    Google Scholar 

  46. Lajiness, M.S., in: Silipo, C. and Vittoria, A. (Eds.), QSAR: Rational Approaches to the Design of Bioactive Compounds, Elsevier, Amsterdam, Netherlands, (1991) pp. 201–204.

    Google Scholar 

  47. Dhanoa, D.S., Gupta, V., Sapienza, A. and Soll, R.M., Poster 26, American Chemical Society National Meeting, Anaheim, CA, (1999).

  48. Hall, L.H. and Kier, L.B., In: Boyd, D.B. and Lipkowitz, K.B. (Eds.), The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Relations," Reviews of Computational Chemistry, VCH Publishers, New York (1991), Ch. 9, pp. 367–422.

    Google Scholar 

  49. Bonchev, D. and Trinajstic, N., J. Chem. Phys., 67 (1977) 4517–4533.

    Google Scholar 

  50. Lobanov, V.S. and Agrafiotis, D.K., J. Chem. Inf. Comput. Sci., 40 (2000) 460–470.

    Google Scholar 

  51. Agrafiotis, D.K., Prot. Sci., 6 (1997) 287–293.

    Google Scholar 

  52. Agrafiotis, D.K. and Lobanov, V.S., J. Chem. Inf. Comput. Sci., 40 (2000) 1356–1362.

    Google Scholar 

  53. Rassokhin, D.N., Lobanov, V.S. and Agrafiotis, D.K., J. Comput. Chem., 22 (2000) 373–386.

    Google Scholar 

  54. Agrafiotis, D.K., Rassokhin, D.N. and Lobanov, V.S., J. Comput. Chem., 22 (2000) 488–500.

    Google Scholar 

  55. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J. Phys. Chem. A, 102 (1998) 3762–3772.

    Google Scholar 

  56. Agrafiotis, D.K., J. Chem. Inf. Comput. Sci., 41 (2000) 159–167.

    Google Scholar 

  57. Martin, E.J. and Critchlow, R.E., J. Comb. Chem., 1 (1999) 32–45.

    Google Scholar 

  58. Martin, E.J. and Wong, A., J. Chem. Inf. Comput. Sci., 40 (2000) 215–220.

    Google Scholar 

  59. Koehler, R.T., Dixon, S.L. and Villar, O.H., J.Med. Chem., 42 (1999) 4695–4704.

    Google Scholar 

  60. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeny, P.J., Adv. Drug Delivery Rev., 23 (1997) 3–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrafiotis, D. Multiobjective optimization of combinatorial libraries. J Comput Aided Mol Des 16, 335–356 (2002). https://doi.org/10.1023/A:1020837112154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020837112154

Keywords

Navigation