Skip to main content
Log in

Hypercomputation

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

A survey of the field of hypercomputation, including discussion of a variety of objections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberth, O. (1968), ‘Analysis in the Computable Number Field’, Journal of the Association of Computing Machinery 15, pp. 275–299.

    Google Scholar 

  • Abramson, F.G. (1971), ‘Effective Computation over the Real Numbers’, Twelfth Annual Symposium on Switching and Automata Theory, Northridge, CA: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • Ambrose, A. (1935), ‘Finitism in Mathematics (I and II)’, Mind 35, pp. 186–203 and 317–340.

    Google Scholar 

  • Bechtel,W. and Richardson, R.C. (1993), Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research, Princeton: Princeton University Press.

    Google Scholar 

  • Blake, R.M. (1926), ‘The Paradox of Temporal Process’, Journal of Philosophy 23, pp. 645–654.

    Google Scholar 

  • Blum, L., Shub, M. and Smale, S. (1989), ‘On a Theory of Computation and Complexity Over the Real Numbers: NP–Completeness, Recursive Functions and Universal Machines’, Bulletin of the American Mathematical Society, New Series, 21, pp. 1–46.

    Google Scholar 

  • Blum, L., Cucker, F., Shub, M. and Smale, S. (1998), Complexity and Real Computation, NewYork: Springer.

    Google Scholar 

  • Bogdanov, A.A. (1980), Essays in Tektology: The General Science of Organisation, trans. G. Gorelik, Seaside, CA: Intersystems.

    Google Scholar 

  • Boolos, G.S. and Jeffrey, R.C. (1974), Computability and Logic, Cambridge: Cambridge University Press.

    Google Scholar 

  • Bush, V. (1931), ‘The Differential Analyser: A New Machine for Solving Differential Equations’, Journal of the Franklin Institute 212, pp. 447–488.

    Google Scholar 

  • Bush, V. (1936), ‘Instrumental Analysis’, Bulletin of the American Mathematical Society 42, pp. 649–669.

    Google Scholar 

  • Bush, V. and Caldwell, S.H. (1945), ‘A New Type of Differential Analyser’, Journal of the Franklin Institute 240, pp. 255–326.

    Google Scholar 

  • Cleland, C.E. (1993), ‘Is the Church-Turing Thesis True?’, Minds and Machines 3, pp. 283–312.

    Google Scholar 

  • Church, A. (1936), ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics 58, pp. 345–363.

    Google Scholar 

  • Church, A. (1940), ‘On the Concept of a Random Sequence’, American Mathematical Society Bulletin 46, pp. 130–135.

    Google Scholar 

  • Churchland, P.M. and Churchland, P.S. (1990), ‘Could a Machine Think?’, Scientific American 262, pp. 26–31.

    Google Scholar 

  • Copeland, B.J. (1997a), ‘The Church-Turing Thesis’, in E. Zalta, ed., Stanford Encyclopedia of Philosophy, <http://plato.stanford.edu>.

  • Copeland, B.J. (1997b), ‘The Broad Conception of Computation’, American Behavioral Scientist 40, pp. 690–716.

    Google Scholar 

  • Copeland, B.J. (1998a), ‘Turing's O-machines, Penrose, Searle, and the Brain’, Analysis 58, pp. 128–138.

    Google Scholar 

  • Copeland, B.J. (1998b), ‘Super Turing-Machines’, Complexity 4, pp. 30–32.

    Google Scholar 

  • Copeland, B.J. (1998c), ‘Even Turing Machines Can Compute Uncomputable Functions’, in C. Calude, J. Casti and M. Dinneen, eds., Unconventional Models of Computation, London: Springer.

    Google Scholar 

  • Copeland, B.J. (2000), ‘Narrow Versus Wide Mechanism’, Journal of Philosophy 96, pp. 5–32.

    Google Scholar 

  • Copeland, B.J. (2001a), ‘Colossus and the Dawning of the Computer Age’, in R. Erskine and M. Smith, eds., Action This Day, London: Bantam Books.

    Google Scholar 

  • Copeland, B.J. (2001b), ‘Modern History of Computing’, in E. Zalta (ed.), Stanford Encyclopedia of Philosophy, <http://plato.stanford.edu>.

  • Copeland, B.J. (2002), ‘Accelerating Turing Machines’, Minds and Machines 12, pp. 281–301.

    Google Scholar 

  • Copeland, B.J. and Proudfoot, D. (1999a), ‘Alan Turing's Forgotten Ideas in Computer Science’, Scientific American 280, pp. 76–81.

    Google Scholar 

  • Copeland, B.J. and Proudfoot, D. (1999b), ‘The Legacy of Alan Turing’, Mind 108, pp. 187–195.

    Google Scholar 

  • Copeland, B.J. and Sylvan, R. (1999), ‘Beyond the Universal Turing Machine’, Australasian Journal of Philosophy 77, pp. 46–66.

    Google Scholar 

  • Davis, M. (1958), Computability and Unsolvability, New York: McGraw-Hill.

    Google Scholar 

  • Deutsch, D. (1985), ‘Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer’, Proceedings of the Royal Society, Series A, 400, pp. 97–117.

    Google Scholar 

  • Dreyfus, H.L. (1992), What Computers Still Can't Do: A Critique of Artificial Reason, Cambridge, MA: MIT Press.

    Google Scholar 

  • Earman, J. and Norton, J.D. (1993), ‘Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes’, Philosophy of Science 60, pp. 22–42.

    Google Scholar 

  • Earman, J. and Norton, J.D. (1996), ‘Infinite Pains: The Trouble with Supertasks’, in A. Morton and S.P. Stich, eds., Benacerraf and his Critics, Oxford: Blackwell.

    Google Scholar 

  • Gandy, R. (1980), ‘Church's Thesis and Principles for Mechanisms’, in J. Barwise, H.J. Keisler and K. Kunen, eds., The Kleene Symposium, Amsterdam: North-Holland.

    Google Scholar 

  • Geroch, R. and Hartle, J.B. (1986), ‘Computability and Physical Theories’, Foundations of Physics 16, pp. 533–550.

    Google Scholar 

  • Gold, E.M. (1965), ‘Limiting Recursion’, Journal of Symbolic Logic 30, pp. 28–48.

    Google Scholar 

  • Harvey, I. and Bossomaier, T. (1997), ‘Time Out of Joint: Attractors in Asynchronous Random Boolean Networks’, in P. Husbands and I. Harvey, eds., Fourth European Conference on Artificial Life, Cambridge, MA: MIT Press.

    Google Scholar 

  • Hogarth, M.L. (1992), ‘Does General Relativity Allow an Observer to View an Eternity in a Finite Time?’, Foundations of Physics Letters 5, pp. 173–181.

    Google Scholar 

  • Hogarth, M.L. (1994), ‘Non-Turing Computers and Non-Turing Computability’, PSA 1994 1, pp. 126–138.

    Google Scholar 

  • Israel, D. (2002), ‘Reflections on Gödel's and Gandy's Reflections on Turing's Thesis’, Minds and Machines 12, pp. 181–201.

    Google Scholar 

  • Kampis, G. (1991), Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Complexity, Oxford: Pergamon.

    Google Scholar 

  • Kampis, G. (1995), ‘Computability, Self-Reference, and Self-Amendment’, Communications and Cognition-Artificial Intelligence 12, pp. 91–110.

    Google Scholar 

  • Karp, R.M. and Lipton, R.J. (1982), ‘Turing Machines that Take Advice’, in E. Engeler et al., eds., Logic and Algorithmic, Genève: L'Enseignement Mathématique.

    Google Scholar 

  • Kleene, S.C. (1967), Mathematical Logic, New York: Wiley.

    Google Scholar 

  • Komar, A. (1964), ‘Undecidability of Macroscopically Distinguishable States in Quantum Field Theory’, Physical Review, second series, 133B, pp. 542–544.

    Google Scholar 

  • Kreisel, G. (1965) ‘Mathematical Logic’, in T.L. Saaty, ed., Lectures on Modern Mathematics, Vol. 3, New York: John Wiley.

    Google Scholar 

  • Kreisel, G. (1967), ‘Mathematical Logic: What Has it Done For the Philosophy of Mathematics?’, in R. Schoenman, ed., Bertrand Russell: Philosopher of the Century, London: George Allen and Unwin.

    Google Scholar 

  • Kreisel, G. (1970), ‘Hilbert's Programme and the Search for Automatic Proof Procedures’, in M. Laudet et al., eds., Symposium on Automatic Demonstration, Lecture Notes in Mathematics, Vol. 125, Berlin: Springer.

    Google Scholar 

  • Kreisel, G. (1971), ‘Some Reasons for Generalising Recursion Theory’, in R.O. Gandy and C.M.E. Yates, eds., Logic Colloquium’ 69, Amsterdam: North-Holland.

    Google Scholar 

  • Kreisel, G. (1972), ‘Which Number Theoretic Problems Can Be Solved in Recursive Progressions on π11-Paths Through 0?’, Journal of Symbolic Logic 37, pp. 311–334.

    Google Scholar 

  • Kreisel, G. (1974), ‘A Notion of Mechanistic Theory’, Synthese 29, pp. 11–26.

    Google Scholar 

  • Kreisel, G. (1982), Review of Pour–El and Richards, Journal of Symbolic Logic 47, pp. 900–902.

    Google Scholar 

  • Kreisel, G. (1987), ‘Church's Thesis and the Ideal of Formal Rigour’, Notre Dame Journal of Formal Logic 28, pp. 499–519.

    Google Scholar 

  • Krylov, S.M. (1986), ‘Formal Technology and Universal Systems’, Cybernetics, Part 1: No. 4, pp. 85–89, Part 2: No. 5, pp. pp28–31.

    Google Scholar 

  • Krylov, S.M. (1996), ‘Formal Technology and Cognitive Processes’, International Journal of General Systems 24, pp. 233–243.

    Google Scholar 

  • Krylov, S.M. (1997), Formal Technology in Philosophy, Engineering, Bio-evolution and Sociology, Samara State Technical University.

  • Kugel, P. (1986) ‘Thinking May Be More Than Computing’, Cognition 22, pp. 137–198.

    Google Scholar 

  • Lipshitz, L. and Rubel, L.A. (1987), ‘A Differentially Algebraic Replacement Theorem, and Analog Computability’, Proceedings of the American Mathematical Society 99, pp. 367–372.

    Google Scholar 

  • Lokhorst, G.J. (2000), ‘Why I am Not a Super–Turing Machine’, Hypercomputation Workshop, University College, London, 24 May 2000.

    Google Scholar 

  • Maass, W. and Orponen, P. (1997), ‘On the Effect of Analog Noise in Discrete-Time Analog Computations’, NeuroColt Technical Report Series, NC-TR-97-042.

  • Maass, W. and Sontag, E.D. (1997), ‘Analog Neural Nets with Gaussian or Other Common Noise Distributions Cannot Recognise Arbitrary Regular Languages’, NeuroColt Technical Report Series, NC-TR-97-043.

  • MacLennan, B.J. (1987), ‘Technology–Independent Design of Neurocomputers: The Universal Field Computer’, IEEE First International Conference on Neural Networks, Vol. 3, San Diego, CA: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • Penrose, R. (1989), The Emperor's New Mind Concerning Computers, Minds, and the Laws of Physics, Oxford: Oxford University Press.

    Google Scholar 

  • Penrose, R. (1990), Précis of The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics, tiBehavioural and Brain Sciences 13, pp. 643–655 and 692–705.

    Google Scholar 

  • Penrose, R. (1994), Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford: Oxford University Press.

    Google Scholar 

  • Pitowsky, I. (1990), ‘The Physical Church Thesis and Physical Computational Complexity’, Iyyun 39, pp. 81–99.

    Google Scholar 

  • Pour-El, M.B. (1974), ‘Abstract Computability and its Relation to the General Purpose Analog Computer’, Transactions of the American Mathematical Society 199, pp. 1–28.

    Google Scholar 

  • Pour-El, M.B. and Richards, J.I. (1979), ‘A Computable Ordinary Differential Equation Which Possesses No Computable Solution’, Annals of Mathematical Logic 17, pp. 61–90.

    Google Scholar 

  • Pour-El, M.B. and Richards, J.I. (1981), ‘TheWave Equation with Computable Initial Data such that its Unique Solution is not Computable’, Advances in Mathematics 39, pp. 215–239.

    Google Scholar 

  • Pour-El, M.B. and Richards, J.I. (1989), Computability in Analysis and Physics, Berlin: Springer.

    Google Scholar 

  • Putnam, H. (1960), ‘Minds and Machines’, in S. Hook, ed., Dimensions of Mind, New York: New York University Press.

    Google Scholar 

  • Putnam, H. (1965), ‘Trial and Error Predicates and the Solution of a Problem of Mostowski’, Journal of Symbolic Logic 30, pp. 49–57.

    Google Scholar 

  • Putnam, H. (1992), Renewing Philosophy, Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Rubel, L.A. (1985), ‘The Brain as an Analog Computer’, Journal of Theoretical Neurobiology 4, pp. 73–81.

    Google Scholar 

  • Rubel, L.A. (1988), ‘Some Mathematical Limitations of the General–Purpose Analog Computer’, Advances in Applied Mathematics 9, pp. 22–34.

    Google Scholar 

  • Rubel, L.A. (1989), ‘Digital Simulation of Analog Computation and Church's Thesis’, Journal of Symbolic Logic 54, pp. 1011–1017.

    Google Scholar 

  • Russell, B.A.W. (1915), Our Knowledge of the External World as a Field for Scientific Method in Philosophy, Chicago: Open Court.

    Google Scholar 

  • Russell, B.A.W. (1936), ‘The Limits of Empiricism’, Proceedings of the Aristotelian Society 36, pp. 131–150.

    Google Scholar 

  • Scarpellini, B. (1963), ‘Zwei Unentscheitbare Probleme der Analysis’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 9, pp. 265–289.

    Google Scholar 

  • Shagrir, O. (2002), ‘Effective Computation by Humans and Machines’, Minds and Machines 12, pp. 221–240.

    Google Scholar 

  • Shannon, C.E. (1941), ‘Mathematical Theory of the Differential Analyser’, Journal of Mathematics and Physics of the Massachusetts Institute of Technology 20, pp. 337–354.

    Google Scholar 

  • Siegelmann, H.T. and Sontag, E.D. (1992), ‘On the Computational Power of Neural Nets’, Proceedings of the 5 th ?Annual ACM Workshop on Computational Learning Theory, Pittsburgh, pp. 440–449.

  • Siegelmann, H.T. and Sontag, E.D. (1994), ‘Analog Computation via Neural Networks’, Theoretical Computer Science 131, pp. 331–360.

    Google Scholar 

  • Smale, S. (1988), ‘The Newtonian Contribution to Our Understanding of the Computer’, Queen's Quarterly 95, pp. 90–95.

    Google Scholar 

  • Stannett, M. (1990), ‘X-Machines and the Halting Problem: Building a Super–Turing Machine’, Formal Aspects of Computing 2, pp. 331–341.

    Google Scholar 

  • Stewart, I. (1991a), ‘Deciding the Undecidable’, Nature 352, pp. 664–665.

    Google Scholar 

  • Stewart, I. (1991b), ‘The Dynamics of Impossible Devices’, Nonlinear Science Today 1, pp. 8–9.

    Google Scholar 

  • Turing, A.M. (1936–1937), ‘On Computable Numbers, with an Application to the Entscheidungsproblem’, Proceedings of the London Mathematical Society, Series 2, 42, pp. 230–265.

    Google Scholar 

  • Turing, A.M. (1938), ‘Systems of Logic Based on Ordinals'. Dissertation presented to the faculty of Princeton University in candidacy for the degree of Doctor of Philosophy. Published in Proceedings of the London Mathematical Society 45 (1939), pp. 161–228.

    Google Scholar 

  • Turing, A.M. (1945), ‘Proposal for Development in the Mathematics Division of an Automatic Computing Engine (ACE)’, in B.E. Carpenter and R.W. Doran, eds., A.M.Turing's ACE Report of 1946 and Other Papers, Cambridge, MA: MIT Press. A digital facsimile of the original document may be viewed in The Turing Archive for the History of Computing <http://www.AlanTuring.net/proposed_ electronic_calculator>.

    Google Scholar 

  • Turing, A.M. (1947), ‘Lecture to the London Mathematical Society on 20 February 1947’, in B.E. Carpenter and R.W. Doran, eds., A.M.Turing's ACE Report of 1946 and Other Papers, Cambridge, MA: MIT Press.

    Google Scholar 

  • Turing, A.M. (1948), ‘Intelligent Machinery’, in B. Meltzer and D. Michie, eds., Machine Intelligence 5, Edinburgh: Edinburgh University Press. A digital facsimile of the original document may be viewed in The Turing Archive for the History of Computing <http://www.AlanTuring.net/intellige nt_machinery>.

    Google Scholar 

  • Turing, A.M. (1950), ‘Computing Machinery and Intelligence’, Mind 59, pp. 433–460.

    Google Scholar 

  • Turing, A.M. (1951), ‘Can Digital Computers Think?’, in B.J. Copeland, ed., ‘A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing’, in K. Furukawa, D. Michie and S. Muggleton, eds., Machine Intelligence 15, Oxford: Oxford University Press.

    Google Scholar 

  • Turing, A.M. (c. 1951), ‘Intelligent Machinery, A Heretical Theory’, in B.J. Copeland, ed., ‘A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing’, in K. Furukawa, D. Michie and S. Muggleton, eds., Machine Intelligence 15, Oxford: Oxford University Press.

    Google Scholar 

  • Wegner, P. (1997), ‘Why Interaction is More Powerful than Algorithms’, Communications of the ACM 40, pp. 80–91.

    Google Scholar 

  • Weyl, H. (1927), Philosophie der Mathematik und Naturwissenschaft, Munich: R. Oldenbourg.

    Google Scholar 

  • Wolfram, S. (1985), ‘Undecidability and Intractability in Theoretical Physics’, Physical Review Letters 54, pp. 735–738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copeland, B.J. Hypercomputation. Minds and Machines 12, 461–502 (2002). https://doi.org/10.1023/A:1021105915386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021105915386

Navigation