Skip to main content
Log in

Automatic Control and Adaptive Time-Stepping

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Adaptive time-stepping is central to the efficient solution of initial value problems in ODEs and DAEs. The error committed in the discretization method primarily depends on the time-step size h, which is varied along the solution in order to minimize the computational effort subject to a prescribed accuracy requirement. This paper reviews the recent advances in developing local adaptivity algorithms based on well established techniques from linear feedback control theory, which is introduced in a numerical context. Replacing earlier heuristics, this systematic approach results in a more consistent and robust performance. The dynamic behaviour of the discretization method together with the controller is analyzed. We also review some basic techniques for the coordination of nonlinear equation solvers with the primary stepsize controller in implicit time-stepping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Åström and B. Wittenmark, Computer Controlled Systems-Theory and Design, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1990).

    Google Scholar 

  2. P. Deuflhard and F. Bornemann, Numerische Mathematik II: Integration gewöhnlicher Differentialgleichungen (Walter de Gruyter, Berlin, 1994).

    Google Scholar 

  3. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971).

    Google Scholar 

  4. K. Gustafsson, M. Lundh and G. Söderlind, A PI stepsize control for the numerical solution of ordinary differential equations, BIT 28 (1988) 270–287.

    Google Scholar 

  5. K. Gustafsson, Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods, ACM TOMS 17 (1991) 533–554.

    Google Scholar 

  6. K. Gustafsson, Control theoretic techniques for stepsize selection in implicit Runge-Kutta methods, ACM TOMS 20 (1994) 496–517.

    Google Scholar 

  7. K. Gustafsson and G. Söderlind, Control strategies for the iterative solution of nonlinear equations in ODE solvers, SIAM J. Sci. Comput. 18 (1997) 23–40.

    Google Scholar 

  8. E. Hairer, S.P. N¸rsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd revised ed. (Springer, Berlin, 1993).

    Google Scholar 

  9. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised ed. (Springer, Berlin, 1996).

    Google Scholar 

  10. G. Hall, Equilibrium states of Runge-Kutta schemes, ACM TOMS 11 (1985) 289–301.

    Google Scholar 

  11. G. Hall, Equilibrium states of Runge-Kutta schemes, part II, ACM TOMS 12 (1986) 183–192.

    Google Scholar 

  12. G. Hall and D. Higham, Analysis of stepsize selection schemes for Runge-Kutta codes, IMA J. Num. Anal. 8 (1988) 305–310.

    Google Scholar 

  13. D. Higham and G. Hall, Embedded Runge-Kutta formulae with stable equilibrium states, J. Comput. Appl. Math. 29 (1990) 25–33.

    Google Scholar 

  14. H. Olsson and G. Söderlind, Stage value predictors and efficient Newton iterations in implicit Runge-Kutta methods, SIAM J. Sci. Comput. 20 (1999) 185–202.

    Google Scholar 

  15. H. Olsson and G. Söderlind, The approximate Runge-Kutta computational process, BIT 40 (2000) 351–373.

    Google Scholar 

  16. J.J.B. de Swart, Parallel software for implicit differential equations, Ph.D. thesis, CWI, Amsterdam (1997).

    Google Scholar 

  17. J.J.B. de Swart and G. Söderlind, On the construction of error estimators for implicit Runge-Kutta methods, J. Comput. Appl. Math. 86 (1997) 347–358.

    Google Scholar 

  18. T. Söderström and P. Stoica, System Identification (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  19. H.A. Watts, Step size control in ordinary differential equation solvers, Trans. Soc. Comput. Sim. 1 (1984) 15–25.

    Google Scholar 

  20. J.A. Zonneveld, Automatic numerical integration, Ph.D. thesis, Math. Centre Tracts 8, CWI, Amsterdam (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderlind, G. Automatic Control and Adaptive Time-Stepping. Numerical Algorithms 31, 281–310 (2002). https://doi.org/10.1023/A:1021160023092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021160023092

Navigation