Skip to main content
Log in

Global Error Estimators for Order 7, 8 Runge–Kutta Pairs

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Dormand, Prince and their colleagues [3–5] showed in a sequence of papers that the approximation of an initial value differential system propagated by a Runge–Kutta pair, together with a continuous approximation obtained using additional derivative values could be utilized to obtain estimates of the global error. They illustrated the results using pairs of orders p−1 and p for several values of p. The current authors [13] have developed a more direct representation of the order conditions, characterized families of global error estimators for Runge–Kutta pairs of arbitrary values of p, and showed that efficient global error estimating Runge–Kutta methods are based on the nodes of a Lobatto quadrature formula. Here, formulas for a good 7, 8 pair, interpolants of each of orders 7 and 8, and global error estimators of orders 10 and 12 illustrate how to obtain global error estimates of orders 9, 10, or 11, for arbitrary initial value systems. One set of graphs indicates that the stated order of the global error estimators is achieved numerically, and a second set illustrates the relative efficiency for several global error estimators when the approximation is propagated with a variable stepsize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Butcher, The Numerical Solution of Ordinary Differential Equations (Wiley, London, 1987).

    Google Scholar 

  2. J.R. Dormand, Numerical Methods for Differential Equations (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  3. J.R. Dormand, R.R. Duckers and P.J. Prince, Global error estimation with Runge-Kutta methods, IMA J. Numer. Anal. 4 (1984) 169–184.

    Google Scholar 

  4. J.R. Dormand, J.P. Gilmore and P.J. Prince, Globally embedded Runge-Kutta schemes, Ann. Numer. Math. 1 (1994) 97–106.

    Google Scholar 

  5. J.R. Dormand, M.A. Lockyer, N.E. McGorrigan and P.J. Prince, Global error estimation with Runge-Kutta triples, Comput. Math. Appl. 18 (1989) 835–846.

    Google Scholar 

  6. J.R. Dormand and P.J. Prince, Runge-Kutta triples, Comput. Math. Appl. 12A (1986) 1007–1017.

    Google Scholar 

  7. W.H. Enright, The relative efficiency of alternative defect control schemes for high order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30 (1993) 1419–1445.

    Google Scholar 

  8. W.H. Enright, K.R. Jackson, S.P. N¸rsett and P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM Trans. Math. Software 13 (1986) 193–218.

    Google Scholar 

  9. D.J. Higham, The tolerance proportionality of adaptive ODE solvers, J. Comput. Appl. Math. 45 (1993) 227–236.

    Google Scholar 

  10. T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9 (1972) 603–637.

    Google Scholar 

  11. F. Krogh, Private communication (1973).

  12. T. Macdougall, Global error estimators for explicit Runge-Kutta methods, M.Sc. thesis (1998).

  13. T. Macdougall and J.H. Verner, Global error estimates for high order explicit Runge-Kutta methods (2001) in progress.

  14. L.F. Shampine, Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal. 22 (1985) 1014–1027.

    Google Scholar 

  15. P.W. Sharp and J.H. Verner, Completely imbedded Runge-Kutta pairs, SIAM J. Numer. Anal. 31 (1994) 1169–1190.

    Google Scholar 

  16. J.H. Verner, Explicit Runge-Kutta methods with estimates of the local truncation error, SIAM J. Numer. Anal. 15 (1978) 772–790.

    Google Scholar 

  17. J.H. Verner, Differentiable interpolants for high-order Runge-Kutta methods, SIAM J. Numer. Anal. 30 (1993) 1446–1466.

    Google Scholar 

  18. P.E. Zadunaisky, A method for the estimation of errors propagated in the numerical solution of a system of ordinary differential equations, in: Proc. of Internat. Astronom. Union Symposium, Vol. 25, Thessaloniki, 1964 (Academic Press, New York, 1966) pp. 281–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdougall, T., Verner, J. Global Error Estimators for Order 7, 8 Runge–Kutta Pairs. Numerical Algorithms 31, 215–231 (2002). https://doi.org/10.1023/A:1021190918665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021190918665

Navigation