Skip to main content
Log in

Numerical Integration of Reaction–Diffusion Systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Approximating numerically the solutions of a reaction–diffusion system in an efficient manner requires the application of implicit methods, since the Courant–Friedrichs–Lewy condition on explicit methods imposes a time step of the order of the square of the space step. In this article, we review two types of strategies which are expected to yield reasonably precise solutions within a reasonable computing time. The first examines methods for solving the linear step necessary in any resolution procedure; estimates of CPU time in terms of the error are given in the non preconditioned and in the preconditioned case – provided that it is possible to define an efficient preconditioner. The second strategy is based on splitting, with or without extrapolation. The respective faults and qualities of both strategies are examined; they lead to a list of difficult analytical and numerical problems with possible hints as to their solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp. 67(222) (1998) 457–477.

    Google Scholar 

  2. R. Barrett, M. Berry, T.F. Chan et al., Templates for the solution of linear systems: building blocks for iterative methods, Society for Industrial and Applied Mathematics (SIAM, Philadelphia, PA, 1994), http://www.netlib.org/templates/templates.ps.

    Google Scholar 

  3. F.A. Bornemann, An adaptive multilevel approach to parabolic equations. II. Variable-order time discretization based on a multiplicative error correction, Impact Comput. Sci. Engrg. 3(2) (1991) 93–122.

    Google Scholar 

  4. F.A. Bornemann, An adaptive multilevel approach to parabolic equations. III. 2D error estimation and multilevel preconditioning, Impact Comput. Sci. Engrg. 4(1) (1992) 1–45.

    Google Scholar 

  5. P.N. Brown and C.S.Woodward, Preconditioning strategies for fully implicit radiation diffusion with material-energy transfer. Technical Report UCRL-JC-139087, Lawrence Livermore National Laboratory (2000).

  6. J.C. Butcher and M.T. Diamantakis, DESIRE: diagonally extended singly implicit Runge-Kutta effective order methods, Numer. Algorithms 17(1-2) (1998) 121–145.

    Google Scholar 

  7. J.C. Butcher and Z. Jackiewicz, Implementation of diagonally implicit multistage integration methods for ordinary differential equations, SIAM J. Numer. Anal. 34(6) (1997) 2119–2141.

    Google Scholar 

  8. J.C. Butcher and Z. Jackiewicz, Construction of high order diagonally implicit multistage integration methods for ordinary differential equations, Appl. Numer. Math. 27(1) (1998) 1–12.

    Google Scholar 

  9. A.J. Chorin, M.F. McCracken, T.J.R. Hughes and J.E. Marsden, Product formulas and numerical algorithms, Comm. Pure Appl. Math. 31(2) (1978) 205–256.

    Google Scholar 

  10. S. Descombes, Convergence of a splitting method of high order for reaction-diffusion system, Math. Comp. (2001) to appear.

  11. S. Descombes and B.O. Dia, An operator-theoretic proof of an estimate on the transfer operator, J. Funct. Anal. 165(2) (1999) 240–257.

    Google Scholar 

  12. S. Descombes and M. Ribot, Convergence of the peaceman-rachford approximation for reaction-diffusion systems, Technical Report, MAPLY, Université Claude Bernard-Lyon 1, France (2001) in preparation.

  13. S. Descombes and M. Schatzman, Directions alternées d'ordre élevé en réaction-diffusion, C. R. Acad. Sci. Paris Sér. I Math. 321(11) (1995) 1521–1524.

    Google Scholar 

  14. S. Descombes and M. Schatzman, Strang's formula for holomorphic semi-groups, J. Math. Pures Appl. (2001) to appear; http://www.umpa.ens-lyon.fr/sdescomb/holom.ps.

  15. B.O. Dia, Méthodes de directions alternées d'ordre élevé en temps, Ph.D. thesis, Université Claude Bernard Lyon 1 (1996).

  16. B.O. Dia and M. Schatzman, Estimations sur la formule de Strang, C. R. Acad. Sci. Paris Sér. I Math. 320(7) (1995) 775–779.

    Google Scholar 

  17. B.O. Dia and M. Schatzman, On the order of extrapolation of integration formulae. Technical Report, Equipe d'Analyse Numérique Lyon Saint-Etienne, Université Claude Bernard Lyon 1 (1995). 268

  18. B.O. Dia and M. Schatzman, Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées, RAIRO Modél. Math. Anal. Numér. 30(3) (1996) 343–383.

    Google Scholar 

  19. B.O. Dia and M. Schatzman, An estimate of the Kac transfer operator, J. Funct. Anal. 145(1) (1997) 108–135.

    Google Scholar 

  20. A. Doumeki, T. Ichinose and H. Tamura, Error bounds on exponential product formulas for Schrödinger operators, J. Math. Soc. Japan 50(2) (1998) 359–377.

    Google Scholar 

  21. S. Gaiffe, R. Glowinski and R. Masson, Méthodes de décomposition de domaine et d'opérateur pour les problèmes paraboliques, C. R. Acad. Sci. Paris Sér. I Math. 331(9) (2000) 739–744.

    Google Scholar 

  22. A. Gerisch and J.G. Verwer, Operator splitting and approximate factorization for taxis-diffusionreaction models, Technical Report, CWI, Amsterdam (2000), ftp://ftp.cwi.nl/pub/ reports/MAS/MAS-R0026.ps.Z.

    Google Scholar 

  23. T. Ichinose and S. Takanobu, Estimate of the difference between the Kac operator and the Schrödinger semigroup, Comm. Math. Phys. 186(1) (1997) 167–197.

    Google Scholar 

  24. T. Ichinose and H. Tamura, Error estimate in operator norm for Trotter-Kato product formula, Integral Equations Operator Theory 27(2) (1997) 195–207.

    Google Scholar 

  25. T. Ichinose and H. Tamura, Error bound in trace norm for Trotter-Kato product formula of Gibbs semigroups, Asymptot. Anal. 17(4) (1998) 239–266.

    Google Scholar 

  26. T. Ichinose and H. Tamura, Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations, Osaka J. Math. 35(4) (1998) 751–770.

    Google Scholar 

  27. T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT 40(4) (2000) 735–744.

    Google Scholar 

  28. R. Kozlov and B. Owren, Order reduction in operator splitting methods, Technical Report Numerics, 6/1999, The Norwegian University of Science and Technology, Trondheim (1999), http://www.math.ntnu.no/num/synode/papers/ps/kozlov99ori.ps.

    Google Scholar 

  29. J. Lang, Two-dimensional fully adaptive solutions of reaction-diffusion equations, in: Seventh Conf.on the Numerical Treatment of Differential Equations, Halle, 1994, Appl. Numer. Math. 18(1-3) (1995) 223–240.

    Google Scholar 

  30. J. Lang, Adaptive FEM for reaction-diffusion equations, in: Proc. of the Internat. Centre for Mathematical Sciences Conf. on Grid Adaptation in Computational PDEs: Theory and Applications, Edinburgh, 1996, Vol. 26 (1998) pp. 105–116.

    Google Scholar 

  31. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems, Theory, Algorithm, and Applications (Springer, Berlin, 2001).

    Google Scholar 

  32. J. Lang and A. Walter, A finite element method adaptive in space and time for nonlinear reaction-diffusion systems, Impact Comput. Sci. Engrg. 4(4) (1992) 269–314

    Google Scholar 

  33. J. Lang and A. Walter, An adaptive Rothe method for nonlinear reaction-diffusion systems, in: Sixth Conf. on the Numerical Treatment of Differential Equations, Halle, 1992, Appl. Numer.Math. 13(1-3) (1993) 135–146.

    Google Scholar 

  34. D. Lanser and J.G. Verwer, Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling, in: Numerical Methods for Differential Equations, Coimbra, 1998, J. Comput. Appl. Math. 111(1/2) (1999) 201–216.

    Google Scholar 

  35. C. Lubich and A. Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations, Math. Comp. 64(210) (1995) 601–627.

    Google Scholar 

  36. C. Lubich and A. Ostermann, Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: Nonsmooth-data error estimates and applications to long-time behaviour, Special issue celebrating the centenary of Runge-Kutta methods, Appl. Numer. Math. 22(1-3) (1996) 279–292.

    Google Scholar 

  37. Y. Maday, A.T. Patera and E.M. R¸nquist, An operator-integration-factor splitting method for timedependent problems: Application to incompressible fluid flow, J. Sci. Comput. 5 (1990) 263–292.

    Google Scholar 

  38. G.I. Marchuk, Methods of Numerical Mathematics, 2nd ed. (Springer, New York, 1982) (translated from the Russian by A.A. Brown).

    Google Scholar 

  39. G.I. Marchuk, Metody Rasshchepleniya i Peremennykh Napravlenii (Akad. Nauk SSSR Otdel Vychisl.Mat., Moscow, 1986).

    Google Scholar 

  40. G.I. Marchuk, Metody Rasshchepleniya (Nauka, Moscow, 1988).

    Google Scholar 

  41. G.I. Marchuk, Splitting and alternating direction methods, in: Handbook of Numerical Analysis, Vol. I (North-Holland, Amsterdam, 1990) pp. 197–462.

    Google Scholar 

  42. J.D. Murray, Mathematical Biology, 2nd ed. (Springer, Berlin, 1993).

    Google Scholar 

  43. D.W. Peaceman and H.H. Rachford, Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math. 3 (1955) 28–41.

    Google Scholar 

  44. Y. Saad, Iterative solution of linear systems in the 20th century, Technical Report umsi-99-152, Department of Computer Science, University of Minnesota (1999), ftp://ftp.cs.umn.edu/ dept/users/saad/reports/FILES/umsi-99-152.ps.gz.

  45. M. Schatzman, Stability of the Peaceman-Rachford approximation, J. Funct. Anal. 162(1) (1999) 219–255.

    Google Scholar 

  46. Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA J. Numer. Anal. 9 (1989) 199–212.

    Google Scholar 

  47. B. Sportisse, Contributions à la modélisation des écoulements réactifs: Réduction des modèles de cinétique chimique et simulation de la pollution atmosphérique, Ph.D. thesis, Ecole Polytechnique (1999).

  48. B. Sportisse, An analysis of operator splitting techniques in the stiff case, J. Comput. Phys. 161(1) (2000) 140–168.

    Google Scholar 

  49. B. Sportisse and J. Verwer, A note on operator splitting in the stiff linear case, Technical Report MASR9830, CWI, Amsterdam (1998), ftp://ftp.cwi.nl/pu/gollum/MAS-R9330.ps.Z.

    Google Scholar 

  50. G. Strang, On the construction and comparison of difference schemes, SIAMJ. Numer. Anal. 5 (1968) 506–517.

    Google Scholar 

  51. S. Takanobu, On the error estimate of the integral kernel for the Trotter product formula for Schrödinger operators, Ann. Probab. 25(4) (1997) 1895–1952.

    Google Scholar 

  52. S. Takanobu, On the trace norm estimate of the Trotter product formula for Schrödinger operators, Osaka J. Math. 35(3) (1998) 659–682.

    Google Scholar 

  53. J.G. Verwer, E.J. Spee, J.G. Blom and W. Hundsdorfer, A second-order Rosenbrock method applied to photochemical dispersion problems, SIAM J. Sci. Comput. 20(4) (1999) 1456–1480 (electronic).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schatzman, M. Numerical Integration of Reaction–Diffusion Systems. Numerical Algorithms 31, 247–269 (2002). https://doi.org/10.1023/A:1021199103644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021199103644

Navigation