Skip to main content
Log in

Facets of the Graph Coloring Polytope

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present a study of the polytope associated to a classic linear integer programming formulation of the graph coloring problem. We determine some families of facets. This is the initial step for the development of a branch-and-cut algorithm to solve large instances of the graph coloring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aardal, A. Hipolito, C. van Hoesel, B. Jansen, C. Roos and T. Terlaky, A branch-and-cut algorithm for the frequency assignment problem, Research Memorandum 96/011, Maastricht University (1996).

  2. E. Balas, S. Ceria, G. Cornuéjols and G. Pataki, Polyhedral methods for the maximum clique problem, in: Cliques, Coloring, and Satisfiability, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 26, eds. D. Johnson and M. Trick (1996) pp. 11-27.

  3. D. Brélaz, New methods to color the vertices of a graph, Communications of the ACM 22 (1979) 251-256.

    Google Scholar 

  4. T. Christof, A. Loebel and M. Stoer, PORTA-a polyhedron representation transformation algorithm, Version 1.3 (1997).

  5. D. de Werra, Heuristics for graph coloring, Computing, Suppl. 7 (1990) 191-208.

    Google Scholar 

  6. F. Glover, M. Parker and J. Ryan, Coloring by tabu branch and bound, in: Cliques, Coloring, and Satisfiability, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 26, eds. D. Johnson and M. Trick (1996) pp. 285-308.

  7. M. Grotschel, L. Lovasz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization (Springer, Berlin, 1988).

    Google Scholar 

  8. A. Herz and D. de Werra, Using tabu search techniques for graph coloring, Computing 39 (1987) 345-351.

    Google Scholar 

  9. D. Johnson, The NP-completeness column: An ongoing guide, Journal of Algorithms 6 (1985) 434-451.

    Google Scholar 

  10. D. Johnson and M. Trick, (eds.), Cliques, Coloring, and Satisfiability, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 26 (1996).

  11. R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, eds. R. Miller and J. Thatcher (1972) pp. 85-104.

  12. M. Kubale and B. Jackowski, A generalized implicit enumeration algorithm for graph coloring, Communications of the ACM 28(4) (1985) 412-418.

    Google Scholar 

  13. C. Mannino and A. Sassano, An exact algorithm for the maximum estable set problem, Computational Optimization and Applications 3 (1994) 243-258.

    Google Scholar 

  14. A. Mehrotra and M. Trick, A column generation approach for graph coloring, INFORMS Journal on Computing 8(4) (1996) 344-353.

    Google Scholar 

  15. G. Nemhauser and G. Sigismondi, A strong cutting plane/branch-and-bound algorithm for node packing, Journal of Operations Research Society 43(5) (1992) 443-457.

  16. G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization (Wiley, New York, 1988).

    Google Scholar 

  17. M.W. Padberg, On the facial structure of Set Packing Polyhedral, Mathematical Programming 5 (1973) 199-215.

    Google Scholar 

  18. T.J. Sager and S. Lin, A pruning procedure for exact graph coloring, ORSA Journal on Computing 3(3) (1991) 226-230.

    Google Scholar 

  19. A. Sassano, On the facial structure of the Set Covering Polytope, Mathematical Programming 44 (1989) 181-202.

    Google Scholar 

  20. E. Sewell, An improved algorithm for exact graph coloring, in: Cliques, Coloring, and Satisfiability, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 26, eds. D. Johnson and M. Trick (1996) pp. 359-373.

  21. L. Wolsey, Integer Programming (Wiley, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coll, P., Marenco, J., Méndez Díaz, I. et al. Facets of the Graph Coloring Polytope. Annals of Operations Research 116, 79–90 (2002). https://doi.org/10.1023/A:1021315911306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021315911306

Navigation