Skip to main content
Log in

Parking Capacity and Pricing in Park'n Ride Trips: A Continuous Equilibrium Network Design Problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of designing parking facilities for park'n ride trips. We present a new continuous equilibrium network design problem to decide the capacity and fare of these parking lots at a tactical level. We assume that the parking facilities have already been located and other topological decisions have already been taken.

The modeling approach proposed is mathematical programming with equilibrium constraints. In the outer optimization problem, a central Authority evaluates the performance of the transport network for each network design decision. In the inner problem a multimodal traffic assignment with combined modes, formulated as a variational inequality problem, generates the share demand for modes of transportation, and for parking facilities as a function of the design variables of the parking lots. The objective is to make optimal parking investment and pricing decisions in order to minimize the total travel cost in a subnetwork of the multimodal transportation system.

We present a new development in model formulation based on the use of generalized parking link cost as a design variable.

The bilevel model is solved by a simulated annealing algorithm applied to the continuous and non-negative design decision variables. Numerical tests are reported in order to illustrate the use of the model, and the ability of the approach to solve applications of moderate size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abdulaal and L.J. LeBlanc, Continuous equilibrium network design models, Transportation Research B 13 (1979) 19-32.

    Google Scholar 

  2. M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 2nd ed. (Wiley, New York, 1993).

    Google Scholar 

  3. D.P. Bertsekas and E.M. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem, Math. Prog. Study 17 (1982) 139-159.

    Google Scholar 

  4. S. Carrese, S. Gori and T. Picano, Relationship between parking location and traffic flows in urban areas, in: Advanced Methods in Transportation Analysis, eds. L. Bianco and P. Toth (Springer, Berlin, 1996) pp. 183-214.

    Google Scholar 

  5. M. Coffin and M.F. Saltzman, Statistical analysis of computational tests of algorithms and heuristics, INFORMS Journal on Computing 12 (2000) 24-44.

    Google Scholar 

  6. E. Fernández, J. De Cea, M. Florian and E. Cabrera, Network equilibrium models with combined modes, Transportation Science 28 (1994) 182-192.

    Google Scholar 

  7. P. Ferrari, A model of urban transport management, Transportation Research B 33 (1999) 43-61.

    Google Scholar 

  8. M. Florian, Private communication (1990).

  9. T.L. Friesz, H.-J. Cho, N. Tobin and G. Anandalingam, A Simulated annealing approach to the network design problem with variational inequality constraints, Transportation Science 26 (1992) 18-26.

    Google Scholar 

  10. T.L. Friesz, N. Tobin, S. Shah, M. Mehta and G. Anandalingam, The multiobjective equilibrium network design problem revisited: a simulated annealing approach, European Journal of Operations Research 65 (1993) 44-57.

    Google Scholar 

  11. R. García and A. Marín, Urban multimodal interchange design methodology, in: Mathematical Methods on Optimization in Transportation Systems, eds.M. Pursula and J. Niittymaki (Kluwer, Dordrecht, 2001) pp. 49-79.

    Google Scholar 

  12. R. García and A. Marín, Network equilibrium models with combined modes: Models and solution algorithms, Report, Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Madrid, España (2000).

    Google Scholar 

  13. R. García, A. Marín and M. Patriksson, A class of column generation/simplicial decomposition algorithms in convex differentiable optimization, I: Convergence analysis, II: Numerical experiments, Reports, Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Madrid, España (1999).

    Google Scholar 

  14. R. García, Metodología para el Diseño de Redes de Transporte y para la elaboración de algoritmos en Programación Matemática Convexa y Diferenciable, Ph.D. dissertation, Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Madrid, España (2001).

    Google Scholar 

  15. A. Geoffrion, Elements of large-scale mathematical programming, Management Science 16 (1970).

  16. T. Larsson, M. Patriksson and C. Rydergren, Applications of simplicial decomposition with nonlinear column generation to nonlinear network flows, in: Network Optimization, eds. P.M. Pardalos, W.W. Hager and D.W. Hearn (Springer, Berlin, 1997) pp. 346-373.

    Google Scholar 

  17. Z. Luo, J. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  18. P. Marcotte, Network optimization with continuous control parameters, Transportation Science 17 (1983) 181-197.

    Google Scholar 

  19. Q. Meng, H. Yang and M.G.H. Bell, An equivalent continously differentiable model and a locally convergent algorithm for the continuous network design problem, Transportation Research 35 (2001) 83-105.

    Google Scholar 

  20. S. Nguyen and C. Dupuis, An efficient method for computing traffic equilibria in networks with asymmetric transportation costs, Transportation Science 18 (1984) 185-202.

    Google Scholar 

  21. J. Nocedal and J. Wright, Numerical Optimization (Springer, New York, 1999).

    Google Scholar 

  22. J. de D. OrtÚzar and L.G.Willumsen, Modelling Transport (Wiley, New York, 1994).

    Google Scholar 

  23. M. Patriksson, The Traffic Assignment Problem.Models and Methods (VSP, Utrecht, The Netherlands, 1994).

    Google Scholar 

  24. Y. Sheffi, Urban Transportation Networks (Prentice-Hall, Englewood Cliffs, NJ, 1985).

    Google Scholar 

  25. C. Suwansirikul, T. Friesz and R.L. Tobin, Equilibrium decomposed optimization: A heuristic for the continuous equilibrium network design problem, Transportation Science 4 (1987) 254-263.

    Google Scholar 

  26. H.N. Tan, S.S. Gershwin and M. Athans, Hybrid optimization in urban traffic networks, Technical report, N DOT-TSC-RSPA-79-7, National Technical Information Service, Springfield, III (1979).

    Google Scholar 

  27. H. Yang and M.G.H. Bell, Models algorithms for road network design: a review and some new developments, Transportation Reviews 18 (1998) 257-278.

    Google Scholar 

  28. D. Vanderbilt and S.G. Louie, A Monte Carlo simulated annealing approach to optimization over continuous variables, Journal of Computational Physics 56 (1984) 259-271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, R., Marín, A. Parking Capacity and Pricing in Park'n Ride Trips: A Continuous Equilibrium Network Design Problem. Annals of Operations Research 116, 153–178 (2002). https://doi.org/10.1023/A:1021332414941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021332414941

Navigation