Skip to main content
Log in

Bound Constrained Smooth Optimization for Solving Variational Inequalities and Related Problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Variational inequalities and related problems may be solved via smooth bound constrained optimization. A comprehensive discussion of the important features involved with this strategy is presented. Complementarity problems and mathematical programming problems with equilibrium constraints are included in this report. Numerical experiments are commented. Conclusions and directions of future research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Andreani, A. Friedlander and J.M. Martínez, On the solution of finite-dimensional variational inequalities using smooth optimization with simple bounds, Journal on Optimization Theory and Applications 94 (1997) 635-657.

    Google Scholar 

  2. R. Andreani, A. Friedlander and S.A. Santos, On the resolution of the generalized nonlinear complementarity problem, SIAM Journal on Optimization 12(2) (2001) 303-231.

    Google Scholar 

  3. R. Andreani and J.M. Martínez, On the solution of the extended linear complementarity problem, Linear Algebra and its Applications 281 (1998) 247-257.

    Google Scholar 

  4. R. Andreani and J.M. Martínez, Solving complementarity problems by means of a new smooth constrained nonlinear solver, in: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, eds. M. Fukushima and L. Qi (Kluwer, 1999) pp. 1-24.

  5. R. Andreani and J.M. Martínez, On the reformulation of nonlinear complementarity problems using the Fischer-Burmeister function, Applied Mathematics Letters 12 (1999) 7-12.

    Google Scholar 

  6. R. Andreani and J.M. Martínez, Reformulation of variational inequalities on a simplex and compactification of complementarity problems, SIAM Journal on Optimization 10 (2000) 878-895.

    Google Scholar 

  7. R. Andreani and J.M. Martínez, On the solution of mathematical programming problems with equilibrium constraints using nonlinear programming algorithms, Mathematical Methods of Optimization Research 54(3) (2001) 345-358.

    Google Scholar 

  8. R. Andreani and J.M. Martínez, On the solution of bounded and unbounded mixed complementarity problems, Optimization 50(3-4) (2001) 265-278.

    Google Scholar 

  9. G. Auchmuty, Variational principles for variational inequalities, Numerical Functional Analysis and Optimization 10 (1989) 863-874.

    Google Scholar 

  10. J.F. Bonnans and C.C. Gonzaga, Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research 21 (1996) 1-25.

    Google Scholar 

  11. B. Chen, X. Chen and C. Kanzow, A penalized Fischer-Burmeister NCP-function, Mathematical Programming 88 (2000) 211-216.

    Google Scholar 

  12. T. Chow, E. Eskow and R. Schnabel, Algorithm 739-A software package for unconstrained optimization using tensor methods, ACM Transactions on Mathematical Software 20 (1994) 518-530.

    Google Scholar 

  13. A.R. Conn, N.I.M. Gould and Ph.L. Toint, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM Journal on Numerical Analysis 25 (1988) 433-460.

    Google Scholar 

  14. R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem (Academic Press, New York, 1992).

    Google Scholar 

  15. S.P. Dirkse and M.C. Ferris, A collection of nonlinear mixed complementarity problems, Optimization Methods and Software 5 (1995) 319-345.

    Google Scholar 

  16. F. Facchinei, A. Fischer and C. Kanzow, A semismooth Newton method for variational inequalities: the case of box constraints, in: Complementarity and Variational Problems: State of the Art, eds. M.C. Ferris and J.-S. Pang (SIAM, Philadelphia, 1997) pp. 76-90.

    Google Scholar 

  17. F. Facchinei, H. Jiang and L. Qi, A smoothing method for mathematical programs with equilibrium constraints, Mathematical Programming 85 (1999) 107-134.

    Google Scholar 

  18. L. Fernandes et al., Solution of a general linear complementarity problem using smooth optimization and its application to bilinear programming and LCP, Applied Mathematics and Optimization 43 (2001) 1-19.

    Google Scholar 

  19. M.C. Ferris and C. Kanzow, Complementarity and related problems, in: Handbook of Applied Optimization, eds. P.M. Pardalos and M.G.C. Resende (Oxford University Press, New York, 2002) pp. 514-530.

    Google Scholar 

  20. M.C. Ferris, C. Kanzow and T.S. Munson, Feasible descent algorithms for mixed complementarity problems, Mathematical Programming 86 (1999) 475-497.

    Google Scholar 

  21. A. Fischer, A special Newton-type optimization method, Optimization 24 (1992) 269-284.

    Google Scholar 

  22. A. Fischer, New constrained optimization reformulation of complementarity problems, Journal of Optimization Theory and Applications 97 (1998) 105-117.

    Google Scholar 

  23. A. Fischer and M. Jiang, Merit functions for complementarity and related problems: A survey, Computational Optimization and Applications 17 (2000) 159-182.

    Google Scholar 

  24. A. Friedlander, J.M. Martínez and S.A. Santos, A new trust region algorithm for bound constrained minimization, Applied Mathematics and Optimization 30 (1994) 235-266.

    Google Scholar 

  25. A. Friedlander, J.M. Martínez and S.A. Santos, On the resolution of large scale linearly constrained convex minimization problems, SIAM Journal on Optimization 4 (1994) 331-339.

    Google Scholar 

  26. A. Friedlander, J.M. Martínez and S.A. Santos, Solution of linear complementarity problems using minimization with simple bounds, Journal of Global Optimization 6 (1995) 253-267.

    Google Scholar 

  27. A. Friedlander, J.M. Martínez and S.A. Santos, A new strategy for solving variational inequalities on bounded polytopes, Numerical Functional Analysis and Optimization 16 (1995) 653-668.

    Google Scholar 

  28. M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Mathematical Programming 53 (1992) 99-110.

    Google Scholar 

  29. M. Fukushima, Merit functions for variational inequality and complementarity problems, in: Nonlinear Optimization and Applications, eds. G. Di Pillo and F. Giannessi (Plenum, New York, 1996) pp. 155-170.

    Google Scholar 

  30. M. Fukushima, Z.-Q. Luo and J.-S. Pang, A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints, Computational Optimization and Applications 10 (1998) 5-34.

    Google Scholar 

  31. C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Computational Optimization and Applications 5 (1996) 155-173.

    Google Scholar 

  32. M.S. Gowda, On the extended linear complementarity problem, Mathematical Programming 72 (1996) 33-50.

    Google Scholar 

  33. P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications, Mathematical Programming 48 (1990) 161-220.

    Google Scholar 

  34. R. Horst, P.M. Pardalos and N.V. Thoai, Introduction to Global Optimization (Kluwer, Dordrecht, 1995).

    Google Scholar 

  35. A.N. Iusem, An iterative algorithm for the variational inequality problem, Computational and Applied Mathematics 13 (1994) 103-114.

    Google Scholar 

  36. H. Jiang et al., A trust region method for solving generalized complementarity problems, SIAM Journal on Optimization 8 (1998) 140-157.

    Google Scholar 

  37. J.J. JÚdice, Algorithms for linear complementarity problems, in: Algorithms for Continuous Optimization, ed. E. Spedicato (Kluwer, Dordrecht, 1994) pp. 435-474.

    Google Scholar 

  38. J. JÚdice and A. Faustino, A Computational Analysis of LCP methods for bilinear and concave quadratic programming, Computers and Operations Research 18 (1991) 645-654.

    Google Scholar 

  39. J. JÚdice and A. Faustino, A sequential LCP algorithm for bilevel linear programming, Annals of Operations Research 34 (1992) 89-106.

    Google Scholar 

  40. J. JÚdice and A. Faustino, The linear-quadratic bilevel programming problem, Journal of Information Systems and Operational Research 32 (1994) 133-146.

    Google Scholar 

  41. J. JÚdice and G. Mitra, Reformulations of mathematical programming problems as linear complementarity problems and an investigation of their solution methods, Journal of Optimization Theory and Applications 57 (1988) 123-149.

    Google Scholar 

  42. J. JÚdice and L. Vicente, On the solution and complexity of a generalized linear complementarity problem, Journal of Global Optimization 4 (1994) 415-424.

    Google Scholar 

  43. C. Kanzow, A new approach to continuation methods for complementarity problems with uniform P-functions, Operations Research Letters 20 (1997) 85-92.

    Google Scholar 

  44. C. Kanzow and M. Fukushima, Equivalence of the generalized complementarity problem to differentiable unconstrained minimization, Journal of Optimization Theory and Applications 90 (1996) 581-603.

    Google Scholar 

  45. C. Kanzow, N. Yamashita and M. Fukushima, New NCP-functions and properties, Journal of Optimization Theory and Applications 94 (1997) 115-135.

    Google Scholar 

  46. Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  47. O.L. Mangasarian, The linear complementarity problem as a separable bilinear program, Journal of Global Optimization 61 (1995) 153-161.

    Google Scholar 

  48. O.L. Mangasarian and J.S. Pang, The extended linear complementarity problem, SIAM Journal on Matrix Analysis and Applications 16 (1995) 359-368.

    Google Scholar 

  49. O.L. Mangasarian and M.V. Solodov, Nonlinear complementarity problem as unconstrained and constrained minimization, Mathematical Programming 62 (1993) 277-297.

    Google Scholar 

  50. J.M. Martínez and B. Fux Svaiter, A practical optimality condition without constraint qualifications for nonlinear programming, Technical Report 63/99, Applied Mathematics Department, State University of Campinas, Campinas, São Paulo, Brazil (1999), to appear in Journal of Optimization Theory and Applications (2003).

    Google Scholar 

  51. J.J. Moré, Global methods for nonlinear complementarity problems, Mathematics of Operations Research 21 (1996) 589-614.

    Google Scholar 

  52. J.J. Moré and W.C. Rheinboldt, On P-and S-functions and related classes of n-dimensional mappings, Linear Algebra and its Applications 6 (1973) 45-68.

    Google Scholar 

  53. J.J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems, Numerische Mathematik 55 (1989) 377-400.

    Google Scholar 

  54. J.S. Pang, Complementarity Problems, in: Handbook of Global Optimization, eds. R. Horst and P. Pardalos (Kluwer, Boston, 1990) pp. 271-338.

    Google Scholar 

  55. J.M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Mathematical Programming 78 (1997) 347-355.

    Google Scholar 

  56. J.M. Peng and Y.X. Yuan, Unconstrained methods for generalized non-linear complementarity problems and variational inequality problems, Journal of Computational Mathematics 14 (1996) 99-107.

    Google Scholar 

  57. J.M. Peng and Y.X. Yuan, Unconstrained methods for generalized complementarity problems, Journal of Computational Mathematics 15(3) (1997) 253-264.

    Google Scholar 

  58. T. Rapcsác, Tensor approximations of smooth nonlinear complementarity problems, in: Variational Inequalities and Network Equilibrium Problems, eds. F. Gianessi and A. Maugeri (Plenum, New York, 1995) pp. 235-249.

    Google Scholar 

  59. M. Solodov, Some optimization reformulations of the extended linear complementarity problem, Computational Optimization and Applications 13 (1999) 187-200.

    Google Scholar 

  60. A. Törn and A. Žilinskas, Global Optimization, Lecture Notes in Computer Science, Vol. 350 (1989).

  61. P. Tseng, N. Yamashita and M. Fukushima, Equivalence of linear complementarity problems to differentiable minimization: a unified approach, SIAM Journal on Optimization 6 (1996) 446-460.

    Google Scholar 

  62. N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of variational inequality problems, Journal of Optimization Theory and Applications 92 (1997) 439-456.

    Google Scholar 

  63. Y. Ye, A fully polynomial-time approximation algorithm for computing a stationary point of the general linear complementarity problem, Mathematics of Operations Research 18 (1993) 334-345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreani, R., Friedlander, A. Bound Constrained Smooth Optimization for Solving Variational Inequalities and Related Problems. Annals of Operations Research 116, 179–198 (2002). https://doi.org/10.1023/A:1021336531779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021336531779

Navigation