Skip to main content
Log in

A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this note we present a modified cyclic low-rank Smith method to compute low-rank approximations to solutions of Lyapunov equations arising from large-scale dynamical systems. Unlike the original cyclic low-rank Smith method introduced by Penzl in [20], the number of columns required by the modified method in the approximate solution does not necessarily increase at each step and is usually much lower than in the original cyclic low-rank Smith method. The modified method never requires more columns than the original one. Upper bounds are established for the errors of the low-rank approximate solutions and also for the errors in the resulting approximate Hankel singular values. Numerical results are given to verify the efficiency and accuracy of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Antoulas, Lectures on the Approximation of Linear Dynamical Systems, Draft (SIAM, Philadelphia, PA, 2002) to appear.

    Google Scholar 

  2. A.C. Antoulas and D.C. Sorensen, Projection methods for balanced model reduction, Technical Report ECE-CAAM Departments, Rice University (March 2001).

  3. A.C. Antoulas, D.C. Sorensen and S. Gugercin, A survey of model reduction methods for large-scale systems, in: Structured Matrices in Operator Theory, Numerical Analysis, Control, Signal and Image Processing, Contemporary Mathematics (Amer. Math. Soc., Providence, RI, 2001).

    Google Scholar 

  4. A.C. Antoulas, D.C. Sorensen and Y.K. Zhou, On the decay rate of Hankel singular values and related issues, Systems Control Lett. (2002) to appear.

  5. R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX + XA = C: Algorithm 432, Comm. ACM 15 (1972) 820–826.

    Google Scholar 

  6. N. Ellner and E. Wachspress, Alternating direction implicit iteration for systems with complex spectra, SIAM J. Numer. Anal. 28 (1991) 859–870.

    Google Scholar 

  7. K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds, Internat. J. Control 39 (1984) 1115–1193.

    Google Scholar 

  8. G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, MD, 1996).

    Google Scholar 

  9. S. Gugercin and A.C. Antoulas, A comparative study of 7 algorithms for model reduction, in: Proc. of 39th CDC, Sydney, Australia, December 2000.

  10. S. Gugercin and A.C. Antoulas, Approximation of the International Space Station 1R and 12A models, in: Proc. of the 40th CDC, December 2001.

  11. S. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation, IMA J. Numer. Anal. 2 (1982) 303–323.

    Google Scholar 

  12. A.S. Hodel, K.P. Poola and B. Tenison, Numerical solution of the Lyapunov equation by approximate power iteration, Linear Algebra Appl. 236 (1996) 205–230.

    Google Scholar 

  13. D.Y. Hu and L. Reichel, Krylov subspace methods for the Sylvester equation, Linear Algebra Appl. 172 (1992) 283–313.

    Google Scholar 

  14. I.M. Jaimoukha and E.M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal. 31 (1994) 227–251.

    Google Scholar 

  15. B.C. Moore, Principal component analysis in linear system: Controllability, observability and model reduction, IEEE Trans. Automat. Control 26 (1981) 17–32.

    Google Scholar 

  16. A. Lu and E.L. Wachspress, Solution of Lyapunov equations by alternating direction implicit iteration, Comput. Math. Appl. 21(9) (1991) 43–58.

    Google Scholar 

  17. D.W. Peaceman and H.H. Rachford, The numerical solutions of parabolic and elliptic differential equations, J. SIAM 3 (1955) 28–41.

    Google Scholar 

  18. T. Penzl, Algorithms for model reduction of large dynamical systems, Technical Report SFB393/99-40, Sonderforschungsbereich 393, Numerische Simulation auf massiv parallelen Rechern, TU Chemnitz, FRG (1999); available from http://www.tu-chemnitz.de/sfb393/sfb99pr.html.

  19. T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case, Systems Control Lett. 40 (2000) 139–144.

    Google Scholar 

  20. T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAMJ. Sci. Comput. 21(4) (2000) 1401–1418.

    Google Scholar 

  21. J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control 32 (1980) 677–687.

    Google Scholar 

  22. G. Starke, Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 28 (1991) 129–141.

    Google Scholar 

  23. R.A. Smith, Matrix equation, XA + BX = C, SIAM J. Appl. Math. 16 (1968) 198–201.

    Google Scholar 

  24. E. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Let. 1 (1988) 87–90.

    Google Scholar 

  25. E. Wachspress, The ADI minimax problem for complex spectra, in: Iterative Methods for Large Linear Systems, eds. D. Kincaid and L. Hayes (Academic Press, San Diego, CA, 1990) pp. 251–271.

    Google Scholar 

  26. W. Xing, Q. Zhang and Q. Wang, A trace bound for a general square matrix product, IEEE Trans. Automat. Control 45(8) (2000) 1563–1565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gugercin, S., Sorensen, D. & Antoulas, A. A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations. Numerical Algorithms 32, 27–55 (2003). https://doi.org/10.1023/A:1022205420182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022205420182

Navigation