
Machine Learning, 11, 7-22 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Coding Decision Trees

C.S. WALLACE CSW@CS.MONASH.EDU.AU
Computer Science, Monash University, Clayton 3168, Australia

J.D. PATRICK JON@CM.DEAKIN.OZ.AU

Computing & Mathematics, Deakin University, Geelong 3217, Australia

Editor: Dennis Kibler

Abstract. Quinlan and Rivest have suggested a decision-tree inference method using the Minimum Description
Length idea. We show that there is an error in their derivation of message lengths, which fortunately has no
effect on the final inference. We further suggest two improvements to their coding techniques, one removing an
inefficiency in the description of non-binary trees, and one improving the coding of leaves. We argue that these
improvements are superior to similarly motivated proposals in the original paper.

Empirical tests confirm the good results reported by Quinlan and Rivest, and show our coding proposals to
lead to useful improvements in the performance of the method.

Keywords: decision trees, supervised learning, minimum message length, minimum description length, informa-
tion theory

1. Introduction

Quinlan and Rivest (1989) have proposed a method for inferring Decision Trees based on the
general inductive inference method known variously as Minimum Message Length (Wallace
& Freeman, 1987) or Minimum Description Length (Rissanen, 1983). The present article
is essentially a gloss on their paper, which we hereafter refer to simply as QR. Sections
of QR will be referred to as QR2.1, equations as QR(3), etc.

While we support both the thrust and the major conclusions of QR, the paper contains
what appear to us some errors of presentation that, while they turn out not to affect the
body of QR, could lead to some confusion. Since QR presents an important advance in
the theory of decision tree inference, it seems desirable to try to clarify the points con-
cerned. We also suggest technical modifications of the QR algorithm that appear to have
some advantages.

The Decision Tree problem is an instance of the general regression problem, which may
be described as follows. The given data refer to a set of N things, usually representing
a random sample from a large population. There is a defined set of "attributes" or "inde-
pendent variables." For each thing, the data give a vector comprising a value for each vari-
able. There is a further, distinguished variable, the "dependent variable," and the data give
its value for each thing. There is also a family of functions defined on the set of possible
independent variable vectors. The general regression problem is to find, within the family,
that function of the independent variables that best predicts the value of the dependent vari-
able. It is hoped that if a function is found that is a good predictor of the dependent variable
over the sample set, it will give useful predictions for new things from the same population.



8 C.S. WALLACE AND J.D. PATRICK

The general regression problem takes a number of forms depending on the nature of
the variables involved, the family of possible predictor functions, and the criterion used
to judge predictive success. For instance, in the classical linear regression problem, all
variables are real-valued, the family is the family of linear combinations of the independent
variables, and the usual criterion is the mean squared difference between the value of the
predictor function and the dependent variable.

In the Decision Tree problem of Quinlan (1986), the dependent variable is categorical,
and its value is termed the "class" of a thing. The predictor function is a rooted tree that
sorts things into "categories" by routing each thing from the root node along branches
of the tree until it reaches a leaf node. Each non-leaf node is labelled with an attribute.
If the attribute is discrete, one branch leaves the node for each possible discrete value,
and a thing reaching the node takes the branch given by its value for the attribute. Conven-
tionally, we label the possible values with the integers 1, 2, 3, etc., and draw the branches
with 1 on the left. If the attribute labelling a node is real, the node is further labelled with
a "cut value." A thing reaching the node takes the left branch if its value for the attribute
is less than the cut value; otherwise it takes the right branch.

Each leaf node defines a category. Note that the category to which a thing is assigned
is a function of its attribute values, i.e, the independent variables, and not of its class.

A tree that sorts the sample things into categories correlating closely with their classes
can be used for prediction. Any new thing of unknown class can be placed in a category,
and a prediction of its class can be made by inspecting the classes of the sample things
in that category.

2. The induction principle

Any theory or hypothesis T about a body of data D can be used to encode the data as a
binary string. Following classical coding theory (Shannon & Weaver, 1949; Rissanen &
Langdon, 1981), the length of the code string using an optimally efficient code is given by

-logP(D | T) (logs to base 2)

where P(D T) is the probability of obtaining the data D if T is true. The resulting string
is decodable only to a receiver who knows the theory T. If the theory is novel, the string
must therefore be preceded by a string that specifies T using some code agreed a priori.
The length of the string describing Tin an efficient code may be identified with -logP(T),
where P(T) is the a priori probability of the theory. Conversely, adoption of any non-
redundant code for specifying one of a set of possible theories is equivalent to adoption
of a prior probability distribution over the set. The length of the total message is then

The minimum message length principle infers from data D the theory that minimizes the
total message length. Since, by Bayes's Theorem,



CODING DECISION TREES 9

where P(D) is the (constant) probability of getting D and P(T | D) is the posterior probabil-
ity of the theory T given the data D, the induction principle is, at least for countable sets
of possible theories, formally identical to the Bayes rule that selects the theory of highest
posterior probability.

Unfortunately, QR confuses this simple correspondence. In QR2.1, it is argued that if
a string of length t encodes some statement (e.g., a theory), the probability associated with
the statement is

where r > 1 is some constant, which QR chooses as 2. This result is obtained by con-
structing a normalized probability distribution over the set of finite binary strings in which
probability decreases geometrically with string length. Choosing r = 2 gives to a string
of length t a probability

This assignment of probabilities is inapplicable to the strings of concern in MML inference.
If a code is devised to allow the binary encoding of any one of a set of statements, the

set of strings corresponding to the set of statements is not an unrestricted set of finite binary
strings. It must have the prefix property: no string of the set may be a prefix of any other.
If this constraint is not observed, a received string cannot be unambiguously decoded
(Hamming, 1980).

For any set of strings having the prefix property, where string i has length ti, it is well
known that

and for any non-redundant code, equality obtains. Thus it is possible and natural to associate
with a code string of length t the probability 2-t, as we have done in equating the length
of a message naming theory T with — logP(T) , and so on. In fact this association necessarily
follows for the strings of a code of minimal expected length.

Luckily the impact on this error in QR2.1 is minimal. In most of the paper, the same
value r = 2 is used in considering the coding of both theory and data, and all the codes
considered have the prefix property. Thus when QR considers minimization of total message
length, the quantity considered is just twice the correct value, so the correct minimizing
tree is found. In QR8, experiments are reported in which different values for r are used
in the coding of theory and data, but QR warns that there is no firm justification for this
choice.

The known theoretical results (e.g., Wallace & Freeman, 1987; Barron & Cover, 1991)
suggesting the optimality of MML inference give no basis for treating the bits used to encode



10 C.S. WALLACE AND J.D. PATRICK

the theory differently from the bits used to encode the data given the theory. The small
advantage found in QR table III for a higher weight for data bits may be an artifact of their
use of a somewhat inefficient code for the theory, as discussed below, having the effect
of an overweighting of the theory description. QR suggests reasons for using unequal weights
in some circumstances, but we agree that the question remains open.

3. The decision tree message

The message of concern in a regression problem is a message that conveys the sample
things' values of the dependent variable to a receiver who already knows their attribute
values. The "theory" part of the message specifies a predictor function, normally inter-
preted as predicting for any attribute vector a probability distribution over dependent variable
values; the "data" part encodes the things' dependent variable values, using for each thing
a code optimized for the probability distribution predicted from its attributes.

For decision trees, there are three elements to consider in the message. First is the coding
of the structure of the tree, including the labelling of each non-leaf node with an attribute
and (for real attributes) cut value. Second, there is the encoding of the prediction associated
with each category (leaf node). Third, there is the encoding of the things' classes, using
for each thing a code based on the prediction associated with the thing's category. The
order in which elements of these three kinds appear in the message is not necessarily first
kind, second, and then third kind. The coding used in QR intersperses part of the predic-
tion for each category within the description of the tree structure. Nor is it necessarily
the case that an efficient coding will clearly distinguish between elements of the second
and third kinds. In what follows, we describe the QR message in a slightly rearranged form,
designed more clearly to separate the three kinds of element. The rearrangement does not
affect the length or intelligibility of the QR message in any way, and is made purely for
clarity of exposition.

3.1. The structure message

QR4.4 first describes what we will term the "simple" code for the tree structure. Initially
assume all attributes are discrete, so there are no cut values involved.

The code for a leaf is binary 0.
The code for a non-leaf node is binary 1, followed by a code string for the attribute labelling

the node, followed by the codes for the daughter nodes for each possible attribute value
in increasing order.

The code for the decision tree is the code for its root.
For example, if the attributes X, Y, and Z have, respectively, 2, 2, and 3 values, the tree



CODING DECISION TREES 11

is encoded as

1 X 1 Y 0 0 1 z 0 1 y 0 0 0

As QR points out, if there are n attributes, the length of the code for the attribute labelling
the root is logn, but the codes for attributes labelling deeper nodes will be shorter. At any
node, only those discrete attributes that have not appeared in the path from the root to
the node are eligible to label the node. Thus, the length of "X" in the above message is
log 3 bits, the length of the first "Y" is log 2 = 1 bit, and the length of the second "Y"
is zero.

Note that we have removed for later discussion the "default class labels" that appear
in the QR description of the tree coding, since these are elements of the second kind.

If some attributes are real, the simple code must be followed by a list of cut values, and
in coding attributes labels, one must note that a real attribute does not become ineligible
once used.

QR correctly asserts that the simple code is inefficient when attributes have more than
two values. Being non-redundant, the code is efficient for some prior probability distribu-
tion over the set of possible trees, but the implied distribution is unrealistic except for uni-
formly binary trees. Suppose all attributes have b > 2 values, so the trees are uniformly
b-ary. Ignore for the moment the limitations on tree size imposed by the finite numbers
of attributes and sample things, and consider the purely structural string, omitting the attri-
bute labelling and cut values. It comprises just binary digits, a 0 for a leaf and a 1 for
a non-leaf, the latter being followed by the b code strings for the b daughters. Suppose
we expect Is to occur with some fixed probability p independent of preceding digits. Coding
techniques exist in effect allowing each 1 to be coded with (—logp) bits, and each 0 with
(-log(l - p)) bits, and such a code is optimal if indeed the probability of Is is p. Let
v(p) be the expected size, in nodes, of the subtree rooted at some node. If the node is
a leaf (0), the size is 1. If it is non-leaf (1) the expected size is (1 + bv(p)), since each
of the b daughters is the root of a subtree of expected size v(p). Hence



12 C.S. WALLACE AND J.D. PATRICK

Further, if w(p) is the probability that the subtree rooted at some node is finite, then w(p)
is the smallest positive root of the equation:

The smallest positive root is one iff bp > 1.
For instance, ifp = 1/2, b = 3, we find w = 0.62. Hence the simple code, which encodes

leaves and non-leaves each with one bit, in effect assuming p = 1/2, is inefficient for ter-
nary trees, since it implies a distribution giving probability 0.38... to the set of infinite
trees. More importantly, in all the strings encoding finite trees, the fractions of Is is about
1/3. Hence use of the simple code, implicitly assuming p = 1/2, incurs an average addi-
tional length of

1 + (l/3)log(l/3) + (2/3)log(2/3) = 0.089...

bits per node.
For binary trees, the simple code is satisfactory. The set of infinite trees has measure

zero (w(0.5) = 1) and the expected tree size is infinite. Of course, the finite numbers of
attributes and things means the tree cannot exceed a certain size, so the code is slightly
redundant in that it does not consider these limitations. However, the probability assigned
by the implied distribution to trees larger than the limits imposed by the data is typically
negligible.

QR proposes instead to encode the string of leaf/non-leaf choices as follows, using the
fact that the string must have more zeros than ones. First, the number n of nodes is stated
(QR omits to specify this coding, but it seems to be assumed). Then the number k of in-
terior nodes is stated using log[(n + l)/2 + 1] bits, since k < n/2; then the position of
the k ones in the n digits of the structure string is stated using

bits. (We think (n + l)/2 should be replaced by (n - l)/2.) This is not an efficient code,
since many of the resulting code strings cannot represent a tree. For instance, consider
binary trees of 5 interior and 6 leaf nodes. The QR proposal, having stated 11 and 5, then
specifies one of



CODING DECISION TREES 13

possible structure strings. However, from QR(14), there are only

binary trees with 5 interior nodes.
The inefficiency arises because, in a structure string representing a binary tree, the running

count of zeros may not exceed the running count of ones until the end of the string. Thus,

1 1 0 0 1 0 1 1 0 0 0 represents a tree, but
1 1 0 0 1 0 1 0 0 1 0 does not.

The same kind of inefficiency occurs for higher arity.
Instead, we propose a modified form of the simple code. We retain its general form,

but instead of using exactly one bit to specify whether a node is leaf or not, use for each
node other than the root, p = the reciprocal of the arity of the parent of the node. Thus,
in a uniform b-ary tree, each node other than the root is regarded as having probability
1/b of not being a leaf. The presumption that a node resulting from a many-way split of
the things is more likely to be class-homogeneous (and hence a leaf) than one resulting
from a binary split seems not unreasonable. The code is identical with the simple code
for uniform binary trees, but for any arity retains the properties of implying zero measure
for the set of infinite trees, and infinite expected tree size. Unlike the QR proposal, the
code is not redundant.

The probability that the root is a leaf remains to be determined. Since in practice we
hope to get a useful tree, this probability should be low. We have taken it as the reciprocal
of the number of attributes, on the grounds that the more attributes there are, the better
is the chance of finding one that is useful.

QR encodes the cut points for real attributes by naming one of the n known values at
a node using a code of length log n. When n is large, it seems unlikely that the predictive
power of the cut will be much affected by changing the cut by one or two values, so we
expect the QR code will typically waste a few bits in specifying the cut with needless preci-
sion. Indeed, the discussion in QR4.6 makes the same point. We adopted a form of an
alternative discussed in QR4.6. A cut at the median is encoded with one bit, a cut at either
the first or third quartile with three bits, a cut at any odd octile with five bits, and so on.
The implied probabilities and code lengths are slightly adjusted for normalization when
n is not a power of two.

3.2. The category message

The second and third elements of the complete message are expected, respectively, to an-
nounce a "theory" about the distribution of classes within each category, and to encode
the things' classes using a code optimal for the theory. We may consider each category
separately. We first discuss problems with just two classes, and consider a category which,
for the sample set of things, contains n things of which k are class A and (n — k) are class B.



14 C.S. WALLACE AND J.D. PATRICK

Since the things are regarded as independently sampled from some population, any
"theory" about the class distribution in the category can be represented by the probability
p = P (B) that a thing will be found to have class B. We might therefore expect the coding
for the sample data in a category to have the form:

(i) Statement of an estimate p of p.
(ii) A string of A and B symbols, where A is encoded with length -log(l - p), B with

length -log p. (Note that the receiver knows n.)

As shown by Wallace and Boulton (1968), a coding of this form can be constructed and
minimized. The length depends in part on the prior probability density assumed for p.
For a prior density uniform in (0, 1), the length is approximately

Expression (4) is an approximation, and behaves poorly for very small n.
An alternative coding, which we will term the incremental code, does not attempt to

state an estimate of p. Instead, each A or B symbol is encoded in turn with length —log
(1 - q) for A, -log q for B, where q varies from symbol to symbol.

To encode the (j + l)th symbol, after i B's and (j- i)A's have been encoded, we use

where P(p \ i, j) is the posterior density of p given / and j,

and P(p | 0, 0) = P(p) is the prior density of p.
This choice of q minimizes the expected length.
For P(p) the Beta prior

it is easily shown that

which is minimized by the estimate



CODING DECISION TREES 15

We will be interested in symmetric Beta priors for which a = 3, giving

In particular, the uniform prior given by a = I gives

For the uniform prior, the total length of the code for a string of n symbols including k B 's is

which may be interpreted as the cost of specifying k in the range 0 to n, plus the cost of
specifying which selection of k out of n symbols are B's. This code is described in QR4.2.
However, the code actually proposed in QR4.5 is slightly different.

Instead of coding k, the number of B's, on the assumption that k is equally likely a priori
to take any value from 0 to n, QR uses one bit to specify which of the two classes A or
B is the more numerous ("default") in the category, and then encodes the number of the
less numerous (either k or (n - k)) using log(«/2 + 1) bits, where n/2 appears to be rounded
down. For n odd, the resulting length is exactly the same as for the incremental code, i.e.,
(11), but for n even, the length is slightly greater, because for even n,

The increase is related to the fact that for even n, k = n/2, the QR scheme provides
two possible codings: either class could be named the default.

The choice of this scheme over the incremental code may be motivated by the realization
that use of the incremental code results in an incomplete "theory." The incremental code
does not specify an estimate p of the class distribution. It merely encodes the observed
sample classes efficiently. In the terms of section 2, a message for a category advancing
a theory T about p, and using it to encode the class data D, should from (2) have length

The incremental code has length just -log P(D). Thus it is shorter than a message in-
volving inference, such as (4). The QR scheme has the appearance of making an inference,
in that it uses one bit to specify the more numerous class, and QR describes this bit as
being part of the tree structure message. However, the appearance is deceptive. Were the
announcement of the "default class" truly an inference about the population from which
the sample things were drawn, e.g., the inference that p >1/2 for default class B, then
the coding of things' classes should be based on a code optimized for that inference. Such
a code would still permit a coding, albeit a longish one, for a set of classes in which B
is in the minority. The assumption that p >½ in the population does not imply that
k > n/2 in every sample.



16 C.S. WALLACE AND J.D. PATRICK

A true "inference" code, whose length is (4), can still encode samples where k/n is very
different from the estimate p, but the QR scheme cannot encode a sample with k < nil
if it has stated that B is the default. The QR scheme is a disguised form of the incremental
code, and seems to have no advantage over it.

Having pointed out that neither the QR nor the incremental code actually involves infer-
ence of the class distribution in a category, we now concede that in practice its use is en-
tirely sensible in this context. It has been shown (Boulton & Wallace, 1969) that the expected
difference between the lengths of the inference and incremental codes is very small: about
0.24 bits for two classes. The main interest is in the inference of the tree structure rather
than the within-category class distribution, so the fact that the incremental code length
is easy to compute, and is well behaved even for small n, makes it a sensible choice. For
just these reasons, we have previously used it in a rather similar context in the inference
of finite-state grammars (Georgeff & Wallace, 1984).

3.3. The category prior

The incremental code generalizes gracefully to more than two classes. If there are M classes,
and in the first j things of a category, im have had class m, the class of the (j + l)th thing
is encoded assigning a probability

to the class m, where we have assumed a generalized symmetric Beta prior over the unknown
class probabilities [pm] proportional to

QR 4.5 proposes a different generalization based on a recursive extension of the notions
of "default" and "exception." The proposal is not elaborated, but seems to imply a proba-
bility distribution over the class numbers km for a three-class problem inversely propor-
tional to

where

We do not consider this an attractive proposal, since it does not follow from any regular
prior density over the class probabilities.

Returning to the Beta prior (13), we now consider whether the uniform prior given by
a = 1 is appropriate. The aim of constructing a decision tree is, loosely, to produce leaf
categories each predominantly of a single class, i.e., of high class purity. We therefore



CODING DECISION TREES 17

have a strong prior expectation that most of the categories given by any interesting tree
will be fairly pure. If they were not, we would not get a short encoding of the data. The
uniform prior does not express such an expectation. However, values of a less than one
give Beta priors placing greater weight on fairly pure distributions. In the limit as a ap-
proaches zero, the prior becomes singular, placing all weight on the M possible single-
class distributions. We propose a symmetric Beta prior with 0 < a < 1 as an appropriate
basis for coding the classes of things in a category. Note that incremental calculation of
the message length via (9) is straightforward.

It is difficult to propose any fixed value of a, at least until wider experience with real-
world data is obtained. However, the data themselves can be used to estimate a. Using
the method of QR6, a tree can be constructed assuming, say, a = 1. The QR method grows
the tree from the root, at each node selecting a test attribute on the basis of minimizing
the information needed to select the attribute, define its cut value if real, and encode the
classes of things in the resulting children nodes. This process is continued until either every
leaf node is pure, or there is no attribute eligible to split. Having grown this "full" tree,
QR then prunes back splits that proved not to improve the total message length.

We suggest instead that, having grown the full tree with a = 1, say, the best pruned
form and message length can be computed for various values of a, and the best value of
a found. This is a relatively quick process, as the full tree is not altered. It gives a max-
imum likelihood estimate of a for the pruned tree.

Having estimated a, the tree-building process can be repeated using the estimated a,
and may result in a different full tree. If so, a is re-estimated and so on until no improve-
ment is obtained. Convergence is usually found in two or three iterations.

4. Variations

4.1. Lookahead

The basic QR tree-building heuristic selects as the test attribute at a node the attribute
that would minimize the message length were the resulting child nodes leaves. Following
a suggestion in QR6, we implemented a user-selectable lookahead, in which attribute selec-
tion considers the possible splitting of the child nodes. Taking the basic QR heuristic as
zero-level lookahead, we have used up to four-level lookahead on some data sets.

To keep some rein on computing time, when a real attribute is considered the cut value
is selected using no lookahead.

4.2. A dangerous optimization

At the end of QR4.4, it is suggested that if a binary split results in two leaves, some code
length may be saved by using the constraint that the default classes in the two leaves must
be different, since otherwise the split would be useless. This is not so. Suppose there are
two classes A and B, and that a node N receives 75 A's and 24 B's. If a binary attribute
is found that would cause a split into child nodes X and Y with class profiles (50A, 0B)



18 C.S. WALLACE AND J.D. PATRICK

and (25A, 245), the split may well be worthwhile even though both leaves have default
class A. Splitting node N does not change any class prediction for new data: the prediction
will be A for any case reaching node N. However, the objective sought by the MML algorithm
in both QR and our versions is not the correct classification of the maximum number of
cases, but rather the minimization of the amount of information needed to determine the
class once the category is known. The split of N allows half the cases (those going to X)
to have their class unambiguously defined by the category. The remainder, going to Y, are
left with less hint of class than at node N, but overall there is a net reduction in uncertainty.
Such splits are made in our algorithm, and should not be excluded in the QR version. For
similar reasons, we believe that a simple count of errors made on test data by predicting
the "default" class in each category is a poor measure of the predictive power of a tree.

4.3. An alternative category prior

QR4.2 suggests that the number k of exceptions in a (two-class) category might be better
encoded using a code that favors small values of k. Our Beta-prior proposal has this effect
for small a. QR suggests a code, described in QR appendix A, which encodes an integer
k with a code length slightly greater than log k, implying a prior distribution over the in-
tegers approximately proportional to 1/k;, but normalized. We do not support this sugges-
tion, as it implies a prior probability of getting k exceptions in a category that is almost
independent of the number of things in the category.

5. Test results

Results are given for six data sets. Five are ones used in QR (our "XD6" is QR "Prob-
Disj"), and the Geographic set relates to the agricultural utility of land.

Discordant has two classes and 3772 things, but only 58 members of one class. Its attri-
butes are mostly binary or real, with values missing for some attributes. Geographic has
four classes and 106 things, and attribute arity up to eight. XD6 has two classes, 600 things,
and ten binary attributes.

Tables 1, 2, and 3 give results for three sets, using various combinations of structure
code, category prior, and lookahead. "Simple" is the simple structure code using one bit
to indicate leaf or non-leaf; "Modified" is the structure code proposed in section 3.1, ex-
pecting a split with probability 1/(parent arity). Entries for a = 1 show use of the QR
incremental category code; entries for a < 1 show use of a Beta prior with a optimized.
The columns headed "Interior," "Leaves," and "Bits" give the numbers of interior and
leaf nodes and the total message lengths for trees encoding the complete data sets.

The columns headed "Error %" and "Prediction cost" refer to trees built using two
thirds of each data set, and give the error rates observed when the resulting trees were
used to predict the classifications of the remaining third of the data. "Error %" gives the
percentage of test things whose classes differed from the majority class of their category.
"Prediction cost" is a more useful measure, giving the length in bits of a message encoding
the classes of the test things, where the class of each thing is encoding using a code based



CODING DECISION TREES 19

Table I. Tests on "Discordant."

Code

Simple

Modified

No

Lookahead

0

2

0

2

Tree

a

1
0.28
1
0.28

1
0.31
1
0.30

1

Interior

5
7
7
8

3
3
6
8

0

Leaves

8
10
10
11

6
6
9

11

1

Bits

292
284
285
275

291
284
284
275

441

Error %

1.29
1.29
1.37
0.89

—
1.44

—
0.89

1.37

Prediction Cost

93
94
87
77

—
89

—
78

130

Table 2. Tests on "Geographic."

Code

Simple

Modified

No

Lookahead

0

2

0

2

Tree

Of

1
0.035
1
0.022

1
0.039
1
0.039

1

Interior

2
7
3
5

1
6
3
3

0

Leaves

10
15
15
17

9
14
15
15

1

Bits

155
118
147
107

149
125
136
96

206

Error %

39
26
39
26

42
32
26
26

65

Prediction Cost

32
20
32
19

36
24
28
19

58

Table 3. Tests on "XD6."

Code

Simple

No

Lookahead

0

1

2

4

Tree

a

1
0.48
1
0.761
1
0.60
1
0.43

1

Interior

17
17
14
14
17
17
14
15

0

Leaves

18
18
15
15
18
18
15
16

1

Bits

440
436
442
442
425
423
420
415

568

Error %

25
25
19
19

—
—
15
15

37

Prediction Cost

167
170
135
135
—

—
120
120

188

on the class distribution of the training set in its category. The measure is minus the log
probability of obtaining the test classes under the hypothesis represented by the training
set tree.

Note that these predictive tests use trees built with a randomly selected subset of the
data, so the trees in general have slightly different structure and optimum a from those
built using all the data. Each table also gives a total message length and prediction measures
for the "null tree" comprising only the root.



20 C.S. WALLACE AND J.D. PATRICK

5.1. Discussion

For Discordant and Geographic, the results clearly favor the use of a Beta prior with a < 1.
This prior gave shorter total message length, fewer prediction errors, and lower prediction
cost. XD6 showed little or no difference between priors, and the optimal value of a of
0.5 or more represents little expectation of category purity. In fact, the artificial data of
XD6 are generated so that a division into categories according to the Boolean function
of attributes 1 to 9, namely,

al.a2.a3 + a4.a5.a6 + a7.a8.a9

should give categories with 90% purity, but the above function was not discovered by the
algorithm from the limited data available. A tree fully representing this function would
need about 80 nodes.

The "Simple" and "Modified" structure codes differ only for nodes giving a split of
more than two branches, and therefore are identical for XD6. The Discordant attributes
are mostly real or binary, giving more than two child nodes only when a third node was
introduced to accommodate "missing" values, so it is not surprising that the codes differed
little on these data.

The Geographic data has some multi-valued attributes, and the modified code gave the
shortest total message length for these data. Note, however, that the potential benefit of
the modified code was not realized without lookahead.

The reductions in message lengths resulting from the use of a tree, or from a coding
modification, may seem rather unimpressive. For instance, the use of the modified code
on Geographic resulted at most in a reduction of total message length from 107 to 96 bits.
However, the message length is minus the log of a probability, so this reduction means
the posterior odds ratio in favor of the hypothesis using the modified code is about 2000.
Similarly, the reduction of "prediction cost" from 87 to 77 resulting from the adjustment
of a on Discordant (lookahead 2) means the test data favored the adjusted tree by an odds
ratio of 1000.

The total improvement on Geographic on the original QR algorithm produced by the
new structure and category codes and lookahead is 59 bits, corresponding to an odds ratio
of order 1017.

Table 4 summarizes results on five data sets tested in QR. The QR results are headed
MDLP, and ours are headed MML. For brevity, only the modified code, lookahead2 MML

Table 4. Comparison with QR.

MDLP

Data Set

Hypo
Discordant
LED
Endgame
XD6

Size

11
15
83
15
17

Error %

0.6
1.9

26.9
17.9
20.5

Size

11
11
37
10
16

MML

Error %

0.6
0.9

26.1
15.2
15

a

0.03
0.30
0.19
0.23
0.43



CODING DECISION TREES 21

results are given. "Size" is number of leaves. The error rates, both for QR and our results,
are based on a random selection of one third of the cases as test data. Our random selec-
tions presumably differ from QR's.

The new results are generally superior. Part of the improvement is due to the lookahead
used, but even without lookahead, the revised code usually gave slightly better results.
The differences are not dramatic: our algorithm is only a slightly tidied-up version of QR,
and our tree code would be shorter than QR's only by one bit or less per node.

6. Conclusions

Quinlan and Rivest (1989) have shown that minimum message length inference can be applied
to the decision tree problem, and is at least competitive with other methods. There seems
to be a flaw in their presentation of the relation between code length and probability, but
this has no real impact on their work.

The full power of MML inference is obtained only when careful attention is paid to the
optimization of coding techniques. QR correctly identifies an inefficiency in the "simple"
code for non-binary trees, but proposes an alternative that itself is inefficient. We have
instead shown a modification of the simple code restoring its efficiency.

Adoption of a particular code for encoding the "theory" (in this case a tree) induced
from the data is equivalent to accepting a certain prior probability distribution over the
set of possible theories. The code should be chosen not only to be technically efficient
but also to imply a prior distribution that is reasonable in the problem domain.

The QR proposal, while appearing to infer the class distribution in a category, in fact
does not. We argue that, in this context, the omission is acceptable, and show that by aban-
doning the fiction of an inference, a more efficient and flexible coding for classes can be
used. The incremental code based on a symmetric Beta prior generalizes to multiple classes
more gracefully than the QR scheme, and allows a more realistic model of the expectation
that categories will have high purity.

A Fortran 77 program incorporating these amendments and implementing limited look-
ahead has been written, and trials on several data sets support the value of the amendments.
The program is freely available for research from C.S. Wallace.

Acknowledgment

This work was supported by Australian Research Council grant A49030439. Some of the
data sets were made available by W. Buntine and J.R. Quinlan.

References

Barron, A.R., & Cover, T.M. (1991). Minimum complexity density estimation. IEEE Transactions on Informa-
tion Theory, 37(4), 1034-1054.

Georgeff, M.P., & Wallace, C.S. (1984). A general criterion for inductive inference. Proceedings of the 6th Euro-
pean Conference on Artificial Intelligence, Tim O'Shea (Ed.). Amsterdam: Elsevier.



22 C.S. WALLACE AND J.D. PATRICK

Hamming, R.W. (1980). Coding and information theory. Englewood Cliffs, NJ: Prentice Hall.
Quinlan, J.R. & Rivest, R.L. (1989). Inferring decision trees using the minimum description length principle.

Information & Computation, 80, 227-248.
Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 7(1), 81-106.
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. Annals, of

Statistics, 11, 416-431.
Rissanen, J., & Langdon, G.G. (1981). Universal modeling and coding. IEEE Transactions on Information Theory,

IT-27, 12-23.
Shannon, C.E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois

Press.
Wallace, C.S., & Boulton, D.M. (1968). An information measure for classification. Computer Journal, 11, 185-195.
Wallace, C.S..& Freeman, P.R. (1987). Estimation & inference by compact coding. Journal of the Royal Statistical

Society (B), 49, 240-265.

Received March 21, 1991
Accepted February 5, 1992
Final Manuscript May 7, 1992


