Skip to main content
Log in

A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper presents an exploratorymultiobjective evolutionary algorithm (EMOEA)that integrates the features of tabu search andevolutionary algorithm for multiobjective (MO)optimization. The method incorporates the taburestriction in individual examination andpreservation in order to maintain the searchdiversity in evolutionary MO optimization,which subsequently helps to prevent the searchfrom trapping in local optima as well as topromote the evolution towards the globaltrade-offs concurrently. In addition, a newlateral interference is presented in the paperto distribute nondominated individuals alongthe discovered Pareto-front uniformly. Unlikemany niching or sharing methods, the lateralinterference can be performed without the needof parameter settings and can be flexiblyapplied in either the parameter or objectivedomain. The features of the proposed algorithmare examined based upon three benchmarkproblems. Experimental results show that EMOEAperforms well in searching and distributingnondominated solutions along the trade-offsuniformly, and offers a competitive behavior toescape from local optima in a noisyenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Areibi, S. & Vannelli, A. (1993). Circuit Partitioning Using a Tabu Search Approach. IEEE International Symposium on Circuits and Systems 3: 1643–1646.

    Google Scholar 

  • Beyer, D. A. & Ogier, R. G. (1991). Tabu Learning: A Neural Network Search Method for Solving Nonconvex Optimization Problems. IEEE International Joint Conference on Neural Networks 2: 953–961.

    Google Scholar 

  • Braglia, M. & Melloni, R. (1995). Tabu Search for the Single Machine Sequencing Problem with Ready Times. INRIA/IEEE Symposium on Emerging Technologies and Factory Automation 2: 395–403.

    Google Scholar 

  • Coello Coello, C. A. (1996). An Empirical Study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design. Ph.D. Thesis, Department of Computer Science, Tulane University, New Orleans, LA.

    Google Scholar 

  • Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers.

  • Collard, P. & Escazut, C. (1995). Genetic Operators in a Dual Genetic Algorithm. International Conference on Tools and Artificial Intelligence: 12–19.

  • Cvetkovic, D. & Parmee, I. C. (2002). Preferences and Their Application in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 6(1): 42–57.

    Google Scholar 

  • De Falco, I., Del Balio, R., Tarantino, E. & Vaccaro, R. (1994). Improving Search by Incorporating Evolution Principles in Parallel Tabu Search. IEEE Proceedings of the Congress on Evolutionary Computation 2: 823–828.

    Google Scholar 

  • Deb, K. (1999). Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problem. Journal of Evolutionary Computation 7(3): 205–230 (The MIT Press).

    Google Scholar 

  • Deb, K. & Goldberg, D. E. (1989). An investigation of Niche and Species Formation in Genetic Function Optimization. In Schaffer, J. D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, 42–50.

  • Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, Ltd.

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2): 182–197.

    Google Scholar 

  • Encyclopaedia Britannica (2000). The Encyclopedia Britannica (http://www.britannica.com).

  • Fonseca, C. M. (1995). Multiobjective Genetic Algorithms with Application to Control Engineering Problems. Ph.D. Thesis, Dept. Automatic Control and Systems Eng., University of Sheffield, Sheffield, UK.

    Google Scholar 

  • Fonseca, C. M.& Fleming, P. J. (1995). Multi-Objective Genetic Algorithm ade Easy: Selection, Sharing and Mating Restriction. International Conference on Genetic Algorithm in Engineering Systems: Innovations and Application, 12–14. UK.

  • Fonseca, C. M. & Fleming, P. J. (1998). Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms – Part I: A Unified Formulation. IEEE Transactions on System, Man, and Cybernetics-Part A: System and Humans 28(1): 26–37.

    Google Scholar 

  • Garrison, W. G., Hu, X. S. & D'Ambrosio, J. G. (1997). Fitness Functions for Multi-Objective Optimization Problems: Combining Preferences with Pareto Rankings. In Belew, R. K. & Vose, M. D. (eds.) Foundations of Genetic Algorithms 4, 437–455. San Mateo, California: Morgan Kaufmann.

    Google Scholar 

  • Goldberg, D. E. & Segrest, P. (1987). Finite Markov Chain Analysis of Genetic Algorithms. Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms: 1–8.

  • Grimm, L. G. (1993). Statistical Application for Behavioral Sciences. New York: J. Wiley.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Horn, J., Nafpliotis, N. & Goldberg, D. E. (1994). A Niched Pareto Genetic Algorithm for Multiobjective Optimization. Proceeding of First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence 1: 82–87.

    Google Scholar 

  • Khor, E. F., Tan, K. C. & Lee, T. H. (2001). Tabu-Based Exploratory Evolutionary Algorithm for Effective Multi-Objective Optimization, Springer-Verlag Lecture Notes in Computer Science, no. 1993. The First International Conference on Evolutionary Multi-Criteria Optimization (EMO'01), 344–358. Zurich, Switzerland.

  • Kim, H., Hayashi, Y. & Nara, K. (1997). An Algorithm for Thermal Unit Maintenance Scheduling Through Combined Use of GA, SA and TS. IEEE Transactions on Power Systems 12(1): 329–335.

    Google Scholar 

  • Knowles, J. D. & Corne, D. W., (2000). Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2): 149–172 (MIT Press Journals).

    Google Scholar 

  • Laumanns, M., Rudolph, G. & Schwefel, H. P. (1998). A Spatial Predator-Prey Approach to Multi-Objective Optimization: A Preliminary Study. In Eiben, A. E., Schoenauer, M. & Schwefel, H. P. (eds.) Parallel Problem Solving From Nature – PPSN V, 241–249. Amsterdam, Holland: Springer-Verlag.

    Google Scholar 

  • Mantawy, A. H., Abdel-Magid, Y. L. & Selim, S. Z. (1999). Integrating Genetic Algorithms, Tabu Search, and Simulated Annealing for the Unit Commitment Problem. IEEE Transactions on Power Systems 14(3): 829–836.

    Google Scholar 

  • Richardson, J. T., Palmer, M. R., Liepins, G. & Hilliard, M. (1989). Some Guidelines for Genetic Algorithms with Penalty Functions. In Schaffer, J. D. (ed.) Proceedings of Third Int. Conf. on Genetic Algorithms, 191–197.

  • Schaffer, J. D. (1985). Multiple-Objective Optimization Using Genetic Algorithm. Proceedings of the First International Conference on Genetic Algorithms, 93–100.

  • Schaffer, J. D., Caruana, R. A., Eshelman, L. J. & Das, R. (1989). A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization. Proceedings of Third International Conference on Genetic Algorithms, 51–60.

  • Srinivas, N. & Deb, K. (1994). Multiobjective Optimization Using Non-Dominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3): 221–248 (MIT Press Journals).

    Google Scholar 

  • Tan, K. C., Khor, E. F., Heng, C. M. & Lee, T. H. (2001a). Exploratory Multi-Objective Evolutionary Algorithm: Performance Study and Comparisons. 2001 Genetic and Evolutionary Computation Conference, 647–654. California, USA.

  • Tan, K. C., Lee, T. H., Khoo, D. & Khor, E. F. (2001b). A Multi-Objective Evolutionary Algorithm Toolbox for Computer-Aided Multi-Objective Optimization. IEEE Transactions on Systems, Man and Cybernetics: Part B (Cybernetics) 31(4): 537–556.

    Google Scholar 

  • Tan, K. C., Lee, T. H. & Khor, E. F. (2001c). Evolutionary Algorithm with Dynamic Population Size and Local Exploration for Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 5(6): 565–588.

    Google Scholar 

  • Tan, K. C., Lee, T. H. & Khor, E. F. (2002). Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons. Artificial Intelligence Review 17(4): 251–290.

    Google Scholar 

  • The Math Works, Inc. (1998). Using MATLAB. The Math Works Inc., Version 5.

  • Veldhuizen, D. A. V. & Lamont, G. B. (1998). Evolutionary Computation and Convergence to a Pareto Front. In Koza, J. R. (ed.) Late Breaking Paper at the Genetic Programming 1998 Conference, 221–228. Stanford University, California: Stanford University Bookstore.

    Google Scholar 

  • Veldhuizen, D. A. V. & Lamont G. B. (1999). Multiobjective Evolutionary Algorithm Test Suites. Symposium on Applied Computing, 351–357. San Antonio, Texas.

  • Yagiura, M. & Ibaraki, T. (1996). Metaheuristics as Robust and Simple Optimization Tools. IEEE Proceedings of the Congress on Evolutionary Computation, 541–546.

  • Zitzler, E. & Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4): 257–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, K., Khor, E., Lee, T. et al. A Tabu-Based Exploratory Evolutionary Algorithm for Multiobjective Optimization. Artificial Intelligence Review 19, 231–260 (2003). https://doi.org/10.1023/A:1022863019997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022863019997

Navigation