Skip to main content
Log in

Exponential Modeling with Unknown Model Order Using Structured Nonlinear Total Least Norm

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new algorithm called Structured Nonlinear Total Least Norm (SNTLN) has recently been developed for obtaining an approximate solution to the structured overdetermined nonlinear system. Both theoretical justification and computational testing show that SNTLN is an efficient method for solving structured overdetermined systems. In this paper, we present a method based on SNTLN for estimating the parameters of exponentially damped sinusoidal signals in noise when the model order is unknown. It is compared to two other existing methods to show its robustness in recovering correct values of parameters when the model order is unknown, in spite of some large errors in the measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Barkjuijsen, R. De Beer and D. Van Ormondt, Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals, J. Magn. Resonance 73 (1987) 553–557.

    Google Scholar 

  2. H. Chen, S. Van Huffel, D. Ormondt and R. de Beer, Parameter estimation with prior knowledge of known signal poles for the quantification of NMR spectroscopy data in the time domain, J. Magn. Resonance Ser. A 119 (1996) 225–234.

    Google Scholar 

  3. R. De Beer and D. Van Ormondt, Analysis of NMR data using time-domain fitting procedures, in: NMR Basic Principles and Progress Series, Vol. 26 (Springer, Berlin/Heidelberg, 1992) pp. 201–248.

    Google Scholar 

  4. F.B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill, New York, 1956).

    Google Scholar 

  5. R. Kumaresan, Estimating the parameters of exponentially damped/undamped sinusoidal signals in noise, Ph.D. dissertation, University of Rhode Island, Kingston, RI (1982).

    Google Scholar 

  6. R. Kumaresan and D.W. Tufts, Accurate parameter estimation of noisy speech-like signals, presented at: IEEE Internat.Conf.on Acoustics, Speech, Signal Processing, Paris, France, 3–5 May 1982.

  7. R. Kumaresan and D.W. Tufts, Estimating the parameters of exponentially damped sinusoids and pole–zero modeling in noise, IEEE Trans. Acoust. Speech Signal Process. 30(6) (1982) 833–840.

    Google Scholar 

  8. R. Kumaresan, D.W. Tufts and L.L. Scharf, A prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models, Proc. IEEE 72(2) (1984) 230–233.

    Google Scholar 

  9. S.Y. Kung, K.S. Arun and D.V. Bhaskar Rao, State-space and singular value decomposition-based approximation methods for the harmonic retrieval problem, J. Opt. Soc. Amer. 73 (1983) 1799–1811.

    Google Scholar 

  10. A. Macovski and D. Spielman, Magn. Resonance Medicine 3 (1986) 97.

    Google Scholar 

  11. J.P. Norton, An Introduction to Identification (Academic Press, London, 1986).

    Google Scholar 

  12. H. Park, S. Van Huffel and L. Eldén, Fast algorithm for exponential data modeling, in: Proc.of the IEEE Internat.Conf.on Acoustics, Speech, and Signal Processing (ICASSP 94), Adelaide, Australia, April 1994, pp. 25–28.

  13. M.B. Priestley, Spectral Analysis and Time Series, Vols. 1 and 2 (Academic Press, London, 1981).

    Google Scholar 

  14. J.B. Rosen, H. Park and J. Glick, Total least norm formulation and solution for structured problems, SIAM J. Matrix Anal. Appl. 17(1) (1996) 110–128.

    Google Scholar 

  15. J.B. Rosen, H. Park and J. Glick, Total least norm for linear and nonlinear structured problems, in: Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, ed. S. Van Huffel (SIAM, Philadelphia, PA, 1997) pp. 203–214.

    Google Scholar 

  16. J.B. Rosen, H. Park and J. Glick, Structured total least norm for nonlinear problems, SIAM J. Matrix Anal. Appl. 20(1) (1999) 14–30.

    Google Scholar 

  17. J.B. Rosen, H. Park and J. Glick, Signal identification using a least L 1 norm algorithm, Optim. Engrg. 1 (2000) 51–65.

    Google Scholar 

  18. J.B. Rosen, H. Park, J. Glick and L. Zhang, Accurate solution to overdetermined linear equations with errors, using L 1 norm minimization, Comput. Optim. Appl. 17 (2000) 329–341.

    Google Scholar 

  19. A. Tarantola, Inverse Problem Theory.Methods for Data Fitting and Model Parameter Estimation (Elsevier, Amsterdam, 1987).

    Google Scholar 

  20. A Van den Bos, Estimation of Fourier coefficients, IEEE Trans. Instrument. Measm. 38 (1989) 1005–1007.

    Google Scholar 

  21. S. Van Huffel, L. Aerts, J. Bervoets, J. Vandewalle, C. Decanniere and P. Van Hecke, Improved quantitative time–domain analysis of NMR data by total least squares, in: Signal Processings VI: Theories and Applications, Vol. III, eds. J. Vandewalle, R. Boite, M. Moonen and A. Oosterlinck (Elsevier Science, Amsterdam, 1992) pp. 1721–1724.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Park, H. & Rosen, J.B. Exponential Modeling with Unknown Model Order Using Structured Nonlinear Total Least Norm. Advances in Computational Mathematics 19, 307–322 (2003). https://doi.org/10.1023/A:1022881907141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022881907141

Navigation