Abstract
In 1996, we constructed periodic interpolatory scaling functions ϕ j , wavelet functions L j and their dual basis \(\widetilde{\varphi _j }{\text{ and }}\widetilde L_j\) with properties such as symmetry, biorthogonality, any order of smoothness, real-valuedness, explicit expressions and interpolatory. We proved the localization of ϕ j in 1997, and in 1998 with Li proved the localization of L j . In this paper we shall give a detailed proof of the localization for the dual functions \(\widetilde{\varphi _j }{\text{ and }}\widetilde L_j\).
Similar content being viewed by others
References
H.L. Chen, Antiperiodic wavelets, J. Comput. Math. 14(1) (1996) 32–39.
H.L. Chen,Wavelets from trigonometric spline approach, Approx. Theory Appl. 12(2) (1996) 99–110.
H.L. Chen, Periodic orthonormal quasi-wavelet bases, Chinese Sci. Bull. 41(7) (1996) 552–554.
H.L. Chen, Wavelets on the unit circle, Result Math. 31 (1997) 322–336.
H.L. Chen, Complex Harmonic Splines, Periodic Quasi-Wavelets, Theory and Applications (Kluwer Academic, Dordrecht, 2000).
H.L. Chen and D.F. Li, Construction of multidimensional biorthogonal periodic multiwavelets, Chinese J. Contemp. Math. 21(3) (2000) 223–232.
H.L. Chen, X.Z. Liang and G.R. Jin, Bivariate box-spline wavelets, in: Harmonic Analysis in China, eds. M.T. Cheng et al. (Kluwer Academic, Dordrecht, 1995) pp. 183–196.
H.L. Chen, X.Z. Liang, S.L. Peng and S.L. Xiao, Real valued periodic wavelets: construction and the relation with Fourier series, J. Comput. Math. 17(5) (1999) 509–522.
H.L. Chen and S.L. Peng, Solving integral equations with logarithmic kernel by using periodic quasiwavelet, J. Comput. Math. 18(5) (2000) 387–512.
H.L. Chen and S.L. Peng, An O(N) quasi-wavelet algorithm for a second kind boundary integral equation with a logarithmic kernel, J. Comput. Math. 18(5) (2000) 487–512.
H.L. Chen and S.L. Peng, Local properties of periodic cardinal interpolatory function, Acta Math. Sinica (English Series) 17(4) (2001) 613–620.
H.L. Chen and S.L. Xiao, Periodic cardinal interpolatory wavelets, Chinese Ann. Math. 198(2) (1998) 133–142.
C.K. Chui and H.N. Mhashar, On trigonometric wavelets, Constr. Approx. 9 (1993) 167–190.
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series on Applied Mathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).
N. Getz, A fast discrete periodic wavelet transform, Memorandum No. UCB/ERL M92/138 (1992).
S.S. Goh and K.M. Teo, An algorithm for constructing multidimensional biorthogonal periodic multiwavelets, Proc. Edinburgh Math. Soc. 43 (2000) 633–649.
S.S. Goh and C.H. Yeo, Uncertainty products of local periodic wavelets, Adv. Comput. Math. 13 (2000) 319–333.
Y.W. Koh, S.L. Lee and H.H. Tan, Periodic orthogonal splines and wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 201–218.
D.F. Li, S.L. Peng and H.L. Chen, The local property of a class of periodic wavelets, Acta Math. Sinica 44(6) (2001).
W. Lin and L. Mingsheng, On semi-orthogonal wavelet bases of periodic splines and their duals, Differential Equations Control Theory 10 (1995) 503–520.
W. Lin and Y.J. Shen, Wavelet solution to the natural integral equations of the plane elasticity, in: Proc.of the 2nd ISAAC Congress (Kluwer Academic, Dordrecht, 2000) pp. 1417–1480.
Y. Meyer, Onedelletes et Operateurs (Herman, Paris, 1990).
C.A. Micchelli, A tutorial on multivariate wavelet decomposition, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer Academic, Dordrecht, 1992) pp. 191–212.
C.A. Micchelli and T. Sauer, One the regularity of multiwavelets, Adv. Comput. Math. 7 (1997) 455–545.
F.J. Narcowich and J.D. Ward, Wavelets associated with periodic basis functions, Appl. Comput. Harmon. Anal. 3 (1996) 40–56.
A.P. Petukhov, Trigonometric wavelet bases, Preprint.
A.P. Petukhov, Periodic wavelets, Sbornik Math. 188(10) (1997) 69–94.
G. Plonka and M. Tasche, Periodic spline wavelets, Technical Report 93/94, FB Mathematik, Universität Rostock, Germany (1993).
G. Plonka and M. Tasche, A unified approach to periodic wavelets, in: Wavelets: Theory, Algorithms and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, San Diego, 1994) pp. 137–151.
G. Plonka and M. Tasche, On the computation of periodic wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 1–14.
I.J. Schoenberg, Cardinal interpolatory and spline functions II: Interpolatory of data of power growth, J. Approx. Theory 6 (1972) 404–420.
S. Shi, On orthonormal splines wavelets of multi-knots in periodic case, in: Lecture Notes in Pure and Applied Mathematics, Vol. 202, eds. Z.Y. Chen, Y.S. Li, C.A. Micchelli and Y.S. Xu (Marcel Dekker, New York, 1999) pp. 491–505.
M. Skopina, Multiresolution analysis of periodic functions, East J. Approx. 3(2) (1997) 203–224.
G. Strang and V. Strela, Short wavelets and matrix dilation equations, IEEE Trans. Signal Processing 43 (1995) 108–115.
V. Strela and G. Strang, Finite element multiwavelets, in: Proc.of NATO Conf., Maratea (Kluwer Academic, Boston, 1995).
Q. Sun, Refinable functions with compact support, J. Approx. Theory 86(2) (1996) 240–252.
V.A. Zheludev, Operational calculus connected with periodic splines, Dokl. Akad. Nauk SSSR 313(6) (1990) 1309–1315.
V.A. Zheludev, Periodic splines and wavelets, in: Proc.of the Conf.on Math.Analysis and Signal Processing, Cairo, 2–9 January 1994.
V.A. Zheludev, Periodic splines, harmonic analysis and wavelets, in: Signal and Image Representation in Combined Spaces, eds. J. Zeevi and R. Coifman (1996) pp. 1–43.
V.A. Zheludev and A.Z. Averbuch, Construction of biorthogonal discrete wavelet transform using interpolatory splines (to appear).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chen, HL., Peng, SL. Localization of Dual Periodic Scaling and Wavelet Functions. Advances in Computational Mathematics 19, 195–210 (2003). https://doi.org/10.1023/A:1022882423107
Issue Date:
DOI: https://doi.org/10.1023/A:1022882423107