Skip to main content
Log in

Nonlinear Dynamical Systems and Adaptive Filters in Biomedicine

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present the application of a method of adaptive estimation using an algebra–geometric approach, to the study of dynamic processes in the brain. It is assumed that the brain dynamic processes can be described by nonlinear or bilinear lattice models. Our research focuses on the development of an estimation algorithm for a signal process in the lattice models with background additive white noise, and with different assumptions regarding the characteristics of the signal process. We analyze the estimation algorithm and implement it as a stochastic differential equation under the assumption that the Lie algebra, associated with the signal process, can be reduced to a finite dimensional nilpotent algebra. A generalization is given for the case of lattice models, which belong to a class of causal lattices with certain restrictions on input and output signals. The application of adaptive filters for state estimation of the CA3 region of the hippocampus (a common location of the epileptic focus) is discussed. Our areas of application involve two problems: (1) an adaptive estimation of state variables of the hippocampal network, and (2) space identification of the coupled ordinary equation lattice model for the CA3 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Anderson and J. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, NJ, 1988).

    Google Scholar 

  2. Y. Andreev, Differential–geometric methods in control theory, Avtomat. i Telemekh. 9 (1982) 3–41.

    Google Scholar 

  3. V.E. Benes, Exact finite dimensional filters for certain diffusions with non-linear drift, Stochastics 5 (1981) 65–92.

    Google Scholar 

  4. R. Brockett, Lie theory and control systems defined on spheres, SIAM J. Appl. Math. 15 (1973) 213–225.

    Google Scholar 

  5. R. Brockett, Volterra series and geometric control theory, in: Proc. of 1975 IFAC Congress (Philadelfia, USA, 1975).

  6. R. Brockett, Classification and equivalence in estimation theory, in: Proc. of the 18th IEEE Conf. on Decision and Control (1979) pp. 172–175.

  7. R. Brockett, Nonlinear systems and nonlinear estimation theory, in: Stochastic Systems: The Mathematics of Filtering and Identification and Applications (Reidel, Dordrecht, 1981).

  8. D. Chikte and J.T. Lo, Optimal filters for bilinear systems, IEEE Trans. Autom. Control (1981) 248–953.

  9. D. Childers and A. Durling, Digital Filtering and Signal Processing (West Pub. Co, 1975).

  10. W. Chiou and S. Yau, Finite dimensional filters with nonlinear drift II: Brockett's problem on classi-fication of finite dimensional estimation algebras, SIAM J. Control Optim. 32(1) (1994) 297–310.

    Google Scholar 

  11. P. Crouch, Solvable approximations to control systems, SIAM J. Control Optim. 32(1) (1984) 40–54.

    Google Scholar 

  12. M. Davis and S. Marcus, An introduction to nonlinear filtering, in: The Mathematics of Filtering and Identification and Applications, eds. M. Hazewinkel and J.C. Willems (Reidel, Dordrecht, 1981) pp. 53–75.

  13. P. Diniz, Adaptive Filtering: Algorithms and Practical Implementation (Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

  14. D.-Z. Du, P. Pardalos and J. Wang (eds.), Discrete Mathematical Problems with Medical Applications (Amer. Math. Soc., Providence, RI, 2000).

    Google Scholar 

  15. M. Fliess, Un outil algebrique: les series formelles non commutatives, in: Proc. of CNR–CISM Symp. on Algebraic System Theory, Udine, Italy, June 16–27 (1975).

  16. W. Freeman, Neurodynamics: An Exploration of Mesoscopic Brain Dinamics (Springer, Berlin, 2000).

    Google Scholar 

  17. W. Freeman and C. Skarda, Spatial EEG patterns, non-linear dynamics and perception: The neo-Sherringtonian view, Brain Research Reviews 10 (1985) 147–175.

    Google Scholar 

  18. C. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985).

    Google Scholar 

  19. T. Gröbler, G. Barna and P. Ërdi, Statistical model of the hippocampal CA3 region. I. The single-cell module; bursting model of the piramidal cell, Biol. Cybern. 79 (1998) 301–308.

    Google Scholar 

  20. M. Hazevinkel, Lie algebraic method in filtering and identification, in: Stochastic Processes in Physics and Engineering, eds. S. Albeverio, P. Blanchard and M. Hazewinkel (D. Reidel, Dordrecht, 1986) pp. 159–176.

    Google Scholar 

  21. D. Hiebeler and R. Tater, Cellular automata and discrete physics, in: Introduction to Nonlinear Physics, ed. L. Lam (Springer, New York, 1997) pp. 143–166.

    Google Scholar 

  22. A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952) 500–544.

    Google Scholar 

  23. F. Hoppensteadt and E. Izhikevich, Synaptic organizations and dynamical properties of weakly connected neural oscillators: I. Analysis of canonical model, Biol. Cybernet. 75 (1996) 117–127.

    Google Scholar 

  24. F. Hoppensteadt and E. Izhikevich, Weakly Connected Neural Networks (Springer, Berlin, 1997).

    Google Scholar 

  25. L. Iasemidis, P. Pardalos, D. Shiau and J. Sackellares, Quadratic binary programming and dynamic system approach to determine the predictability of epileptic seizures, J. Combin. Optim. 5(1) (2001) 9–26.

    Google Scholar 

  26. A. Isidory, Nonlinear Control Systems (Springer, Berlin, 1995).

    Google Scholar 

  27. E. Izhikevich, Weakly connected quasiperiodic oscillators, FM interactions and multiplexing in the brain, SIAM J. Appl. Math. (1998).

  28. R. Kalman and R. Bucy, New results in linear filtering and prediction theory, Trans. ASME J. Basic. Engrg. 83D (1961) 95–107.

    Google Scholar 

  29. K. Kaneko, The coupled map lattice, in: Theory and Application of Coupled Map Lattices, ed. K. Kaneko (Wiley, New York, 1993) pp. 1–50.

    Google Scholar 

  30. K. Kaneko, Complex System: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences (Springer, Berlin, 2001).

    Google Scholar 

  31. A. Krener, Bilinear and nonlinear realizations of input–output maps, SIAM J. Control 13(4) (1975) 827–834.

    Google Scholar 

  32. Y. Kuramoto, Collective synchronization of pulse-coupled oscillators and excitable units, Phys. D 50 (1992) 15–30.

    Google Scholar 

  33. H. Kushner, Dynamical equation for optimal nonlinear filtering, J. Differential Equations 3 (1967) 179–185.

    Google Scholar 

  34. I. Lo, Global bilinearization of systems with control appearing linearly, SIAM J. Control 13 (1975) 879–884.

    Google Scholar 

  35. J. Lo, Signal detection on Lie groups, in: Geometric Methods in System Theory, eds. D.O. Mayne and R.W. Brockett (D. Reidel, Dordrecht, 1973) pp. 295–303.

    Google Scholar 

  36. S. Marcus and A. Willsky, Algebraic structure and finite dimensional nonlinear estimation, in: Mathematical System Theory, Lecture Notes in Economics and Mathematical Systems, Vol. 131 (Springer, Berlin, 1976) pp. 301–311.

    Google Scholar 

  37. A. Mason and A.N.K. Stratford, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J. Neurosci. 11 (1991) 72–84.

    Google Scholar 

  38. R. Miles and R. Wong, Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus, J. Physiol. 373 (1986) 397–418.

    Google Scholar 

  39. R. Mohler, Bilinear Control Processes (Academic Press, New York, 1973).

    Google Scholar 

  40. C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981) 193–213.

    Google Scholar 

  41. P. Pardalos, P. Knopov, S. Urysev and V. Yatsenko, Optimal estimation of signal parameters using bilinear observation, in: Optimization and Related Topics, eds. A. Rubinov and B. Glover (Kluwer Academic, Dordrecht, 2001) pp. 103–117.

    Google Scholar 

  42. P. Pardalos, J. Sackellares and V. Yatsenko, Classical and quantum controlled lattices: selforganization, optimization and biomedical applications, in: Biocomputing, eds. P. Pardalos and J. Principe (Kluwer Academic Publishers, 2002) pp. 199–224.

  43. G. Roepstorff and B. Christian, From dynamical systems to the Langevin equation, Phys. A 145(1) (1987).

  44. A. Sagle and R. Walde, Introduction to Lie Groups and Lie Algebras (Academic Press, New York, 1972).

    Google Scholar 

  45. R. Sayer, M. Friedlander and S. Redman, The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice, J. Neurosci. 10 (1990) 826–836.

    Google Scholar 

  46. V. Semenov and V. Yatsenko, Dynamical equivalence and digital simulation, Cybernetics and Computing Technology. Complex Control Systems 96 (1981) 107–113.

    Google Scholar 

  47. H. Sussmann and L. Brackets, Real analyticity and geometric control, in: Differential Geometric Control Theory, Proc. of Conf. in Michigan, eds. H.J. Sussmann and L. Brackets (Birkhäuser, Basel, 1983) pp. 1–116.

    Google Scholar 

  48. M. Tsodyks, I. Mitkov and H. Sompolinsky, Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions, Phys. Rev. Lett. 71 (1993) 1280–1283.

    Google Scholar 

  49. A. Willsky, Some estimation problems on Lie groups, in: Geometric Methods in System Theory, eds. D.O. Mayne and R.W. Brockett (D Reidel, Dordrecht, 1973) pp. 305–314.

    Google Scholar 

  50. W. Wong, The estimation algebra of nonlinear filtering systems, in: Mathematical Control Theory, eds. J. Baillieul and J. Willems (Springer, Berlin, 1998) pp. 33–65.

  51. V. Yatsenko, Estimating the signal acting on macroscopic body in a controlled potential well, Kibernetika 2 (1989) 81–85.

    Google Scholar 

  52. V. Yatsenko, Identification and control of the bilinear dynamic systems, Dissertation, Kiev Institute of Cybernetics, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardalos, P.M., Sackellares, J.C., Yatsenko, V.A. et al. Nonlinear Dynamical Systems and Adaptive Filters in Biomedicine. Annals of Operations Research 119, 119–142 (2003). https://doi.org/10.1023/A:1022930406116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022930406116

Navigation