Skip to main content
Log in

Computational Constraints that may have Favoured the Lamination of Sensory Cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

At the transition from early reptilian ancestors to primordial mammals, the areas of sensory cortex that process topographic modalities acquire the laminar structure of isocortex. A prominent step in lamination is granulation, whereby the formerly unique principal layer of pyramidal cells is split by the insertion of a new layer of excitatory, but intrinsic, granule cells, layer IV. I consider the hypothesis that granulation, and the differentiation between supra- and infra-granular pyramidal layers, may be advantageous to support fine topography in their sensory maps. Fine topography implies a generic distinction between “where” information, explicitly mapped on the cortical sheet, and “what” information, represented in a distributed fashion as a distinct firing pattern across neurons. These patterns can be stored on recurrent collaterals in the cortex, and such memory can help substantially in the analysis of current sensory input. The simulation of a simplified network model demonstrates that a non-laminated patch of cortex must compromise between transmitting “where” information or retrieving “what” information. The simulation of a modified model including differentiation of a granular layer shows a modest but significant quantitative advantage, expressed as a less severe trade-off between “what” and “where”. The further connectivity differentiation between infra-granular and supra-granular pyramidal layers is shown to match the mix of “what” and “where” information optimal for their respective target structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge.

    Google Scholar 

  • Allen KM, Walsh CA (1999) Genes that regulate neuronal migration in the cerebral cortex. Epilepsy Res. 36: 143-154.

    Article  PubMed  Google Scholar 

  • Allman J (1990) Evolution of neocortex. In: EG Jones, A Peters, eds. Cerebral Cortex, Vol. 8A: Comparative Structure and Evolution of Cerebral Cortex. Plenum Press, New York. pp. 269-283.

    Google Scholar 

  • Amit DJ (1989) Modelling Brain Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Amit DJ (1995) The Hebbian paradigm reintegrated: Local reverberations as internal representations. Behav. Brain Sci. 18: 617-657.

    Google Scholar 

  • Bar I, Goffinet AM (2000) Evolution of cortical lamination: The reelin/Dab1 pathway. Novartis Found. Symp. 228: 114-128.

    PubMed  Google Scholar 

  • Barbas H, Rempel-Clower N (1997) Cortical structure predicts the pattern of cortico-cortical connections. Cereb. Cortex 7: 635-646.

    Article  PubMed  Google Scholar 

  • Batardiere A, Barone P, Dehay C, Kennedy H (1998) Area-specific laminar distribution of cortical feedback neurons projecting to cat area 17: Quantitative analysis in the adult and during ontogeny. J. Comp. Neurol. 396: 493-510.

    Article  PubMed  Google Scholar 

  • Bosking WH, Crowley JC, Fitzpatrick D (2002) Spatial coding of position and orientation in primary visual cortex. Nature Neurosci. 5: 874-882.

    Article  PubMed  Google Scholar 

  • Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17: 2112-2127.

    PubMed  Google Scholar 

  • Braitenberg V, Schuez A (1991) Anatomy of the Cortex. Springer-Verlag, Berlin.

    Google Scholar 

  • Carroll RL (1997) Patterns and Processes of Vertebrate Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Creutzfeldt OD (1977) Generality of the functional structure of the neocortex. Naturwissenschaften 64: 507-517.

    PubMed  Google Scholar 

  • Diamond IT, Hall WC (1969) Evolution of neocortex. Science 164: 251-262.

    PubMed  Google Scholar 

  • Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput. 1: 480-488.

    Google Scholar 

  • Erickson RP, Hall WC, Jane JA, Snyder M, Diamond IT (1967) Organization of the posterior dorsal thalamus of the hedgehog. J. Comp. Neurol. 131: 103-130.

    PubMed  Google Scholar 

  • Feldmeyer D, Egger V, Lubke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J. Physiol. 521: 169-190.

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1-47.

    PubMed  Google Scholar 

  • Grossberg S (1999) How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat. Vis. 12: 163-185.

    PubMed  Google Scholar 

  • Haberly LB (1990) Comparative aspects of olfactory cortex. In: EG Jones, A Peters, eds. Cerebral Cortex,Vol. 8B: Comparative Structure and Evolution of Cerebral Cortex. Plenum Press, New York. pp. 137-166.

    Google Scholar 

  • Hennig MH, Kerscher N, Funke K, Woergoetter F (2001) Stochastic resonance in the visual system: Does the eye-tremor actually improve visual acuity? Soc. Neurosci. Abs. 821.29.

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational capabilities. Proc. Natl. Acad. Sci. USA 79: 2554-2558.

    PubMed  Google Scholar 

  • Gloor P (1997) The Temporal Lobe and Limbic System. Oxford University Press, New York.

    Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: EG Jones, A Peters, eds. Cerebral Cortex, Vol. 5: Sensory-Motor Areas and Aspects of Cortical Connectivity. Plenum Press, New York. pp. 291-353.

    Google Scholar 

  • Jones EG (1998) Viewpoint: The core and matrix of thalamic organization. Neuroscience. 85: 331-345.

    Article  PubMed  Google Scholar 

  • Kaas JH (1993) Evolution of multiple areas and modules within neocortex. Perspect. Dev. Neurobiol. 1: 101-107.

    PubMed  Google Scholar 

  • Kayser AS, Miller KD (2002) Opponent inhibition:Adevelopmental model of layer 4 of the neocortical circuit. Neuron. 33: 131-142.

    Article  PubMed  Google Scholar 

  • Krubitzer L (1995) The organization of neocortex in mammals: Are species differences really so different? Trends Neurosci. 18: 408-417.

    Article  PubMed  Google Scholar 

  • Lassalle J-M, Bataille T, Halley H (2000) Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol. Lear. Mem. 73: 243-257.

    Article  Google Scholar 

  • Lubke J, Egger V, Sakmann B, Feldmeyer D (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J. Neurosci. 20: 5300-5311.

    PubMed  Google Scholar 

  • Marr D (1971) Simple memory:Atheory for archicortex. Phil. Trans. R. Soc. Lond. B 262: 24-81.

    Google Scholar 

  • McComas AJ, Cupido CM (1999) The Ruler model. Is this how the somatosensory cortex works? Clin. Neurophysiol. 110: 1987-1994.

    Article  PubMed  Google Scholar 

  • Meffin H (2000) Ph.D. Thesis, University of Sidney, Department of Mathematics.

  • Nicoll A, Blakemore C (1993) Patterns of local connectivity in the neocortex. Neural Comput. 5: 665-680.

    Google Scholar 

  • Noctor SC, Palmer SL, McLaughlin DF, Juliano SL (2001) Disruption of layers 3 and 4 during development results in altered thalamocortical projections in ferret somatosensory cortex. J. Neurosci. 21: 3184-3195.

    PubMed  Google Scholar 

  • Podlogar M, Dietrich D, Selke K, Kral T, Clusmann H, Schramm J (2001) Perforated patch-analysis of firing properties in hippocampal granule cells: Minimal sAHP and tonic firing. Soc Neurosci abs. 37.3.

  • Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268: 111-114.

    PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TBS (1980) The basic uniformity in structure of the neocortex. Brain 103: 221-244.

    PubMed  Google Scholar 

  • Rolls ET, Treves A (1998) Neural Networks and Brain Function. Oxford University Press, Oxford.

    Google Scholar 

  • Rowe M (1990) Organization of the cerebral cortex in monotremes and marsupials. In: EG Jones, A Peters, eds. Cerebral Cortex, Vol. 8B: Comparative Structure and Evolution of Cerebral Cortex. Plenum Press, New York. pp. 263-334.

    Google Scholar 

  • Super H, Uylings HBM (2001) The early differentiation of the neocortex: Ahypothesis on neocortical evolution. Cerebral Cortex 11: 1101-1109.

    Article  PubMed  Google Scholar 

  • Szentagothai J (1978) The neuron network of the cerebral cortex: A functional interpretation. Proc. Roy. Soc. (London) B 201: 219-248.

    Google Scholar 

  • Tarczy-Hornoch K, Martin KA, Stratford KJ, Jack JJ (1999) Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. Cereb Cortex 9: 833-843.

    Article  PubMed  Google Scholar 

  • Thorpe SJ, Imbert M (1989) Biological constraints on connectionist models. In: R Pfeifer, Z Schreter, F Fogelman-Soulie, eds. Connectionism in Perspective. Elsevier, Amsterdam. pp. 63-92.

    Google Scholar 

  • Treves A (1993) Local neocortical processing: A time for recognition. Int. J. Neural. Syst. 3: 115-119.

    Google Scholar 

  • Treves A (2001) Information coding in higher sensory and memory areas. In: F Moss, S Gielen, eds. Handbook of Biological Physics, Vol. 4: Neuro-Informatics and Neural Modelling. Elsevier. Amsterdam. pp. 825-852.

    Google Scholar 

  • Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2: 189-199.

    PubMed  Google Scholar 

  • Treves A, Samengo I (2002) Standing on the gateway to memory: Shouldn’t we step in? Cognitive Neuropsychology 12: 557-575.

    Article  Google Scholar 

  • Ulinski PS (1990) The cerebral cortex of reptiles. In: EG Jones, A Peters, eds. Cerebral Cortex, Vol. 8A: Comparative Structure and Evolution of Cerebral Cortex. Plenum Press, New York. pp. 139-215.

    Google Scholar 

  • Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res. 26: 259-275.

    Article  PubMed  Google Scholar 

  • Whitfield IC (1979) The object of the sensory cortex. Brain Behav. Evol. 16: 129-154.

    PubMed  Google Scholar 

  • Yoshioka T, Levitt JB, Lund JS (1992) Intrinsic lattice connections of macaque monkey visual cortical area V4. J. Neurosci. 12: 2785-2802.

    PubMed  Google Scholar 

  • Zatorre RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nature Neurosci. 5: 905-909.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treves, A. Computational Constraints that may have Favoured the Lamination of Sensory Cortex. J Comput Neurosci 14, 271–282 (2003). https://doi.org/10.1023/A:1023213010875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023213010875

Navigation