Skip to main content
Log in

Symmetry Maps of Free-Form Curve Segments via Wave Propagation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents an approach for computing the symmetries (skeletons) of an edge map consisting of a collection of curve segments. This approach is a combination of analytic computations in the style of computational geometry and discrete propagations on a grid in the style of the numerical solutions of PDE's. Specifically, waves from each of the initial curve segments are initialized and propagated as a discrete wavefront along discrete directions. In addition, to avoid error built up due to the discrete nature of propagation, shockwaves are detected and explicitly propagated along a secondary dynamic grid. The propagation of shockwaves, integrated with the propagation of the wavefront along discrete directions, leads to an exact simulation of propagation by the Eikonal equation. The resulting symmetries are simply the collection of shockwaves formed in this process which can be manipulated locally, exactly, and efficiently under local changes in an edge map (gap completion, removal of spurious elements, etc). The ability to express grouping operations in the language of symmetry maps makes it an appropriate intermediate representation between low-level edge maps and high level object hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, N. and Tuceryan, M. 1989. Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt. Computer Vision, Graphics, and Image Processing, 48:304-356.

    Google Scholar 

  • Alt, H. and Schwarzkopf, O. 1995. The Voronoi Diagram of curved objects. In ACM Symp. on Computational Geometry.

  • Arcelli C. 1981. Pattern thinning by contour tracing. Computer Graphics and Image Processing, 17:130-144.

    Google Scholar 

  • Arcelli, C., Cordella, L.P., and Leviadi, S. 1981. From local maxima to connected skeletons. IEEE Trans. on PAMI, 3(2):134-143.

    Google Scholar 

  • Arcelli, C. and di Baja, G. S. 1985. A width-independent fast thinning algorithm. IEEE Trans. on PAMI, PAMI-7(4):463-474.

    Google Scholar 

  • Arcelli, C. and di Baja, G. S. 1989. A one-pass two-operation process to detect the skeletal pixels on the 4-distance transform. IEEE Trans. on PAMI, 11(4):411-414.

    Google Scholar 

  • Arcelli, C. and di Baja, G. S. 1992. Ridge points in euclidean distance maps. Pattern Recognition Letters, 13(4):237-243.

    Google Scholar 

  • Arcelli, C. and di Baja, G. S. 1993. Euclidean skeleton via centre-of-maximal disc extraction. Image andVision Computing, 11(3):163-173.

    Google Scholar 

  • Arnold, V. 1978. Mathematical Methods of Classical Mechanics. Springer-Verlag.

  • August, J., Siddiqi, K., and Zucker, S. W. 1996. Fragment grouping via the principle of perceptual occlusion. In International Conference on Pattern Recognition, pp. 1-8.

  • Aurenhammer, F. 1991. Voronoi diagrams -a survey of fundemantal geometric data structure. ACM Computing Survey, 23(3):345-405.

    Google Scholar 

  • Blum, F. 1973. Biological shape and visual science. J. Theor. Biol., 38:205-287.

    Google Scholar 

  • Borgefors, G. 1984. Distance transformations in arbitrary dimensions. CVGIP, 27:321-345.

    Google Scholar 

  • Borgefors, G., Ragnemalm, I., and Sanniti di Baja, G. 1991. The euclidean distance transform: Finding the local maxima and reconstructing the shape. In 7th SCIA.

  • Brandt, J.W. and Jain, A.J. 1989. A medial axis transform algorithm for compression and vectorization of document images. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 1850- 1853.

  • Brandt, J.W., Jain, A.J., and Algazi, V.R. 1991. Medial axis representation and encoding of scanned documents. Journal of Visual Communications and Image Representation, 2:329-338.

    Google Scholar 

  • Bruce, J.W., Giblin, P.J., and Gibson, C.G. 1985. Symmetry sets. Proceedings of the Royal Society of Edinburgh, 101A:163-186.

    Google Scholar 

  • Butt, M.A. and Maragos, P. 1998. Optimal design of chmafer distance transforms. IEEE Trans. Image Processing.

  • Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-698.

    Google Scholar 

  • Chen, Y.S. and Hsu, W.H. 1990. A comparison of some one-pass parallel thinnings. Pattern Recognition Letters, 11(1):35-41.

    Google Scholar 

  • Choi, H.I., Choi, S.W., Moon, H.P., and Wee, N.S. 1997. New algorithm for medial transform of the plane domain. Graphical Models and Image Processing, 59(6):463-483.

    Google Scholar 

  • Chou, J.J. 1995. Voronoi diagrams for planar shapes. IEEE Computer Graphics and Applications, 15(2):52-59.

    Google Scholar 

  • Courant, R. and Hilbert, D.1962. Methods of Mathematical Physics, II. Interscience Publisher.

  • CVPR'99 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, June), Fort Collins, Colorado, USA, June 23-25 1999. IEEE Computer Society Press.

  • CVPR'99 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, June), Hilton Head Island, plSouth Carolina, USA, June 13-15 2000. IEEE Computer Society Press.

  • Danielsson, P. 1980. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227-248.

    Google Scholar 

  • DeMicheli, E., Caprile, B., Ottonello, P., and Torre, V. 1989. Localization and noise in edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 11:1106-1117.

    Google Scholar 

  • Dill, A.R., Levine, M.D., and Noble, P.B. 1987. Multiple resolution: skeletons. IEEE transactions on Pattern Analysis and Machine Intelligence, 9(4):495-504.

    Google Scholar 

  • Eggers, H. 1998. Two fast Euclidean distance transformations in Z2 based on sufficient propagation. Computer Vision and Image Understanding, 69:106-116.

    Google Scholar 

  • Elber, G. and Kim, M.-S. 1997. Bisector curves of freeform planar curves. Technical Report, Technion-ComputerScience Department, TR-CIS9707.

  • Farouki, R. and Johnstone, J. 1994a. Computing point/curve and curve/curve bisectors. In Design and Application of Curves and Surfaces: Mathematics of Surfaces, R.B. Fisher (Ed.), Oxford University Press, pp. 327-354.

  • Farouki, R.T. and Johnstone, J. K. 1994b. The bisector of a point and a plane parametric curve. Computer Aided Geometric Design, 11:117-151.

    Google Scholar 

  • Ge, Y. and Fitzpatric, J.M. 1996. On the generation of skeletons from discrete euclidean maps. {IEEE Trans. on PAMI}, 18:1055-1067.

    Google Scholar 

  • Giblin, P.J. and Kimia, B.B. 1998. On the local form and transitions of symmetry sets, and medial axes, and shocks in 2D. Technical Report LEMS-170, LEMS, Brown University.

  • Giblin, P.J. and Kimia, B.B. 1999. On the intrinsic reconstruction of shape from its symmetries. In CVPR'99 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, June), Fort Collins, Colorado, USA, June 23-25 1999. IEEE Computer Society Press. pp. 79-84.

  • Giblin, P.J. and Kimia, B.B. 1999. On the local form and transitions of symmetry sets, and medial axes, and shocks in 2D. In ICCV'99 (Seveth International Conference on Computer Vision, KerKyra, Greece, September 20-25, 1999, KerKyra, Greece, September 20- 25 1999. IEEE Computer Society Press. pp. 385-391.

  • Giblin, P.J. and Kimia, B.B. 2000. On the local form of symmetry sets, and medial axes, and shocks in 3D. In CVPR2000, [CVPR'99 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, USA, June)], Hilton Head Island, South Carolina, USA, June 13-15 2000. IEEE Computer Society Press., to appear.

  • Held, M. 1991. On the Computational Geometry of Pocket Machining. Springer-Verlag, Berlin.

    Google Scholar 

  • Ho, S.-B. and Dyer, C. R. 1986. Shape smoothing using medial axis transform. IEEE Trans. on PAMI, 8(4):512-520.

    Google Scholar 

  • Hoffmann, C. and Vermeer, P. 1991. Eliminating extraneous solutions in curve and surface operation. International Journal of Computational Geometry and Applications, 1(1):47-66.

    Google Scholar 

  • ICCV'99 (Seveth International Conference on Computer Vision, KerKyra, Greece, September 20-25, 1999), IEEE Computer Society Press.

  • Igarashi, T. 1998. Teddy: A 3d free-form drawing system. Personal communication, www.mtl.t.u-tokyo.ac.jp/ takeo.

  • Jang, B.-K. and Chin, R.T. 1990. Analysis of thinning algorithms using mathematical morphology. IEEE Trans. on PAMI, 12(6):541- 551.

    Google Scholar 

  • Johannes, M.S. and Kimia, B.B. 2000. On skeleton-based design of form. Technical Report LEMS-184, LEMS, Brown University.

  • Kelly, M.F. and Levine, M.D. 1995. Annular symmetry operators: A method for locating and describing objects. In Fifth International Conference on Computer Vision, pp. 1016-1021.

  • Kelly, P.J. and Weiss, M.L. 1979. Geometry and Convexity. John Wiley and Sons.

  • Kevorkian, J. 1990. Partial Diffential Equations: Analytic Solution Techniques. TheWadsworth and Brooks/Cole Mathematics Series.

  • Kimia, B.B. 1999. Content-based retrieval of images based on shape. In Image Databases, Search and Retrieval of Digital Imagery, L. Bergman and V. Castelli (Ed.), John Wiley and Sons.

  • Kimia, B.B., Chan, J., Bertrand, D., Coe, S., Roadhouse, Z., and Tek, H. 1997. A shock-based approach for indexing of image databases using shape. In Proceedings of the SPIE's Multimedia Storage and Archiving Systems II, vol.3229, Dallas, Texas, pp. 288-302.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1990. Toward a computational theory of shape: An overview. In Proceedings of the First European Conference on Computer Vision, Antibes, France, Springer Verlag, pp. 402-407.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1995. Shapes, shocks, and deformations, I: The components of shape and the reaction-diffusion space. IJCV, 15:189-224.

    Google Scholar 

  • Klein, P. 1998. Computing the edit distance between unrooted ordered trees. In Proceedings, 6th European Symposium on Algorithms, pp. 91-102.

  • Klein, P., Tirthapura, S., Sharvit, D., and Kimia, B. 2000. A tree-edit distance algorithm for comparing simple, closed shapes. In Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, California, January 9-11, pp. 696-704.

  • Lam, L. and Suen, C.Y. 1995. An Evaluation of Parallel Thinning Algorithms for Character Recognition. IEEE Trans. on PAMI, 17(9):914-919.

    Google Scholar 

  • Lam, L., Lee, S.-W., and Suen, C.Y. 1992. Thinning methodologies-a comprehensive survey. IEEE Trans. on PAMI, 14(9):869-885.

    Google Scholar 

  • Latecki, L.J., Lakamper, R., and Eckhardt, U. 2000. Shape descriptors for non-rigid shapes with a single closed contour. In CVPR2000, CVPR'99 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June), Hilton Head Island, South Carolina, USA, June 13-15 2000. IEEE Computer Society Press, pp.424-429.

  • Lee, D.T. 1982. Medial axis transformation of a planar shape. IEEE Trans. on PAMI, 4(4):363-369.

    Google Scholar 

  • LeVeque, R.J. 1992. Numerical Methods for Conservation Laws. Birkhauser Verlag.

  • Leymarie, F. and Levine, M.D. 1992. Fast raster scan distance propagation on the discrete rectangular lattice. Computer Vision, Graphics and Image Processing, 55(1):84-94.

    Google Scholar 

  • Leymarie, F. and Levine, M.D. 1992. Simulating the grassfire transform using an active contour model. IEEE Trans. Pattern Analysis and Machine Intelligence, 14(1):56-75.

    Google Scholar 

  • Lions, P. 1981. Generalized Solutions of Hamilton Jacobi Eqautions. Pitman.

  • Liu, T. and Geiger, D. 1999. Approximate tree matching and shape similarity. In ICCV'99 (Seveth International Conference on Computer Vision, KerKyra, Greece, September 20-25, 1999, KerKyra, Greece), IEEE Computer Society Press, pp. 456-462.

  • Meyer, F. 1990. Digital euclidean skeletons. In SPIE, Vol. 1360, Lausanne, Switzerland, SPIE, pp. 251-262.

    Google Scholar 

  • Montanari, U. 1968. Amethod for obtaining skeletons using a quasi- euclidean distance. JACM, 15(4):600-624.

    Google Scholar 

  • Morse, B.S., Pizer, S.M., and Liu, A. 1993. Multiscale medical analysis of medical images. In Information Processing in Medical Imaging.

  • Ogniewicz, R.L. 1993. Discrete Voronoi Skeletons. Hartung-Gorre.

  • Ogniewicz, R. L. and Ilg, M. 1992. Voronoi skeletons: Theory and applications. In CVPR92.

  • Ogniewicz, R. L. and Kubler, O. 1995. Hierarchic voronoi skeletons. Pattern Recognition, 28(3):343-359.

    Google Scholar 

  • Ohya, T., Iri, M., and Murota, K. 1984. A fast voronoi-diagram algorithm with oaternary tree bucketing. Information Processing Letters, 18:227-231.

    Google Scholar 

  • Osher, S. and Sethian, J. A. 1988. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12-49.

    Google Scholar 

  • Osher, S. and Shu, C.-W. 1991. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal of Numerical Analysis, 28:907-922.

    Google Scholar 

  • Pavlidis, T. 1980. A thinning algorithm for discrete binary images. Computer Graphics and Image Understanding, 13:142- 157.

    Google Scholar 

  • Pizer, S.M. and Burbeck, C. A. 1995. Object representation by cores: Identifying and representing primitive spatial regions. Vision Research, 35(13):1917-1930.

    Google Scholar 

  • Pizer, S. M., Oliver, W. R., and Bloomberg, S. H. 1987. Hierarchical shape description via the multiresolution symmetric axis transform. IEEE Trans. on PAMI, 9(4):5505-511.

    Google Scholar 

  • Preparata, F. P. and Shamos, M. I. 1985. Computational Geometry: An Introduction. Springer-Verlag, New York.

    Google Scholar 

  • Ragnemalm, I. 1990. Generation of Euclidean distance maps. Licenciate Thesis No 206, Linkoping University, Sweden.

    Google Scholar 

  • Ragnemalm, I. 1992. Neighborhoods for distance transformations using ordered propagation. CVGIP: Image Understanding, 56(3):399-409.

    Google Scholar 

  • Ramamurthy, R. and Farouki, R. T. 1998a. Voronoi diagram and medial axis algorithm for planar domains with curved object boundaries i. Theoretical foundations. Journal of Computational and Applied Mathematics.

  • Ramamurthy, R. and Farouki, R. T. 1998b. Voronoi diagram and medial axis algorithm for planar domains with curved object boundaries ii. Detailed algorithm description. Journal of Computational and Applied Mathematics.

  • Rosenfeld, A. and Pflatz, J. 1966. Sequential operations in digital picture processing. Journal of the Association for Computing Machinery, 13(4):471-494.

    Google Scholar 

  • Rouy, E. and Tourin, A. 1992. A viscosity solutions approach to shape-from-shading. SIAM. Journal of Numerical Analysis, 29(3):867-884.

    Google Scholar 

  • Sanniti di Baja, G. 1994. Well-shaped, stable, and reversible skeletons from the (3-4)-distance transform. Journal of Visiual Cummunication and Image Representation, 5:107-115.

    Google Scholar 

  • Sarkar, S. and Boyer, K. 1993. Perceptual organization in computer vision a review and a proposal for a classificatory structure. SMC, 23:382-399.

    Google Scholar 

  • Sarkar, S. and Boyer, K. 1999. Recent Advances in Perceptual Organization for Artificial Vision Systems. Kluwer Academic Publishers, Boston, USA.

  • Scott, G. L., Turner, S., and Zisserman, A. 1989. Using a mixed wave/diffusion process to elicit the symmetry set. Image and Vision Computing, 7(1):63-70.

    Google Scholar 

  • Sebastian, T., Klein, P., and Kimia, B. 2001. Shape matching using edit-distance: An implementation. In Twelfth Annual ACMSIAM Symposium on Discrete Algorithms (SODA), Washington, DC, January 7-9.

  • Sethian, J. A. 1996a. A fast marching level set method for monotonically advancing fronts. Nat. Acad. Sci., 93:1591-1595.

    Google Scholar 

  • Sethian, J. A. 1996b. Level Set Methods. Cambridge University Press, New York.

    Google Scholar 

  • Shaked, D. and Bruckstein, A. M. 1998. Pruning medial axes. Computer Vision and Image Understanding, 69:156-169.

    Google Scholar 

  • Sharvit, D., Chan, J., and Kimia, B. B. 1998. Symmetrybased indexing of image databases. In Workshop on Content-Based Access of Image and Video Libraries, CVPR98, pp. 56-62.

  • Shinghal, R. and Suen, C. 1982. A method for selecting constrained hand-printed character shapes for machine recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(1):74-78.

    Google Scholar 

  • Shu, C.-W. and Osher, S. 1988. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77:439-471.

    Google Scholar 

  • Siddiqi, K. and Kimia, B. B. 1996. Ashock grammar for recognition.In Proceedings of the Conference on Computer Vision and Pattern Recognition, pp 507-513.

  • Siddiqi, K., Kimia, B. B., and Shu, C. 1997. Geometric shockcapturing ENO schemes for subpixel interpolation, computation and curve evolution. Graphical Models and Image Processing, 59(5):278-301.

    Google Scholar 

  • Siddiqi, K., Shokoufandeh, A., Dickinson, S., and Zucker, S. 1998. Shock graphs and shape matching. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, IEEE Computer Society Press, pp. 222-229.

    Google Scholar 

  • Smith, S. and Brady, J. 1997. SUSAN-a new approach to low level image processing. Int. Journal of Computer Vision. In publication.

  • Smoller, J. 1983. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York.

    Google Scholar 

  • Srinivasan, V., Nackman, L. R., Tang, J.-M., and Meshkat, S. N. 1992. Automatic mesh generation using the symmetric axis transform of polygonal domains. IEEE Proceedings, 80, 1485- 1501.

    Google Scholar 

  • Styner, M. and Gerig, G. 2000. Hybrid boundary-medial shape description for biologicallt variable shapes. In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 235- 242.

  • Sugihara, K. and Iri, M. 1992. Construction of the Voronoi Diagram for one million generators in single-precision arithmetic. Proceedings of IEEE, Special Issue on Computational Geometry, 80(9):1471-1484.

    Google Scholar 

  • Tari, S. and Shah, J. 1997. Extraction of shape skeletons from grayscale images. Computer Vision Image Understanding, 66(2):133-146.

    Google Scholar 

  • Tari, S., Shah, J., and Pie, H. 1996. A computationally efficient shape analysis via level sets. In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.

  • Teichmann, S.T.M. 1998. Assisted articulation of closed polygonal models. In SIGGRAPH.

  • Tek, H. 1999. The role of symmetry maps in representating objects in images. Ph.D. Dissertation, Division Of Engineering, Brown University, Providence, RI, 02912.

  • Tek, H. and Kimia, B. B. 1998. Curve evolution, wave propagation, and mathematical morphology. In Fourth International Symposium on Mathematical Morphology (ISMM'98), pp. 115-126.

  • Tek, H. and Kimia, B. B. 1999. Adisceretewave propagation method for the exact recovery of bisectors as shocks. Technical Report LEMS 181, LEMS, Brown University.

  • Tek, H. and Kimia, B. B. 1999. Symmetry map and symmetry transforms. In CVPR'99 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, June), Fort Collins, Colorado, USA, June 23-25 1999. IEEE Computer Society Press, pp. 471-477.

  • Tek, H., Leymarie, F., and Kimia, B. B. 1997. Multiple generation shock detection and labeling using CEDT. In Proceedings of the International Workshop on Visual Form, Capri, Italy. World Scientific, pp. 582-593.

    Google Scholar 

  • Tek, H., Stoll, P., and Kimia, B. B. 1997. Shocks from images: Propagation of orientation elements. In Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 839-845.

  • Tek, H. and Kimia, B. B. 2001. Boundary smoothing via symmetry transforms. Journal of Mathematical Imaging and Vision, 14(3), pp. 211-224.

    Google Scholar 

  • Tirthapura, S., Sharvit, D., Klein, P., and Kimia, B. B. 1998. Indexing based on edit-distance matching of shape graphs. In SPIE Inter.Symposium on Voice, Video, and Data Communications, pp. 25- 36.

  • Verwer, B. 1988. Improved metrics in image processing applied to the Hilditch skeleton. In Ninth International Conference on Pattern Recognition (Rome, Italy, November 14-17, 1988), Washington, DC, Computer Society Press, pp. 137-142.

    Google Scholar 

  • Vincent, L. 1991. Exact euclidean distance function by chain propagations. In Proceedings of the IEEE Computer Vision and Pattern Recognition '91, Maui HI, pp. 520-525.

  • Wright, M. W., Cipolla, R., and Giblin, P. J. 1995. Skeletonization using an extended euclidean distance trasnform. Image and Vision Computing, 13(5):367-375.

    Google Scholar 

  • Yamada, H. 1984. Complete Euclidean distance transformation by parallel operation. In Proceedings of International Conference on Pattern Recognition, pp. 336-338.

  • Yap, C. K. 1987. An O(n log n) algorithm for the voronoi diagram of a set of simple curve segments. Discrete Computational Geometry, 2:365-393.

    Google Scholar 

  • Ye, Q.-Z. 1988. The signed Euclidean distance transform and its applications. In Proceedings of International Conference on Pattern Recognition, pp. 495-499.

  • Zeleznik, R. C., Herndon, K., and Hughes, J. F. 1996. SKETCH: An interface for sketching 3D scenes. In Computer Graphics Proceedings, SIGGRAPH'96, Annual Conference Series, New Orleans, Louisiana, ACM, pp. 163-170.

  • Zhu, S. 1999. Stochastic jump-diffusion process for computing medial axes in Markov Random Fields. IEEE Trans. on PAMI, 21(11):1158-1169.

    Google Scholar 

  • Zhu, S. C. and Yuille, A. L. 1996. Forms:A flexible object recognition and modeling system. Int'l Journal of Computer Vision, 20(3).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tek, H., Kimia, B.B. Symmetry Maps of Free-Form Curve Segments via Wave Propagation. International Journal of Computer Vision 54, 35–81 (2003). https://doi.org/10.1023/A:1023753317008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023753317008

Navigation