Skip to main content
Log in

Similarity based SAR (SIBAR) as tool for early ADME profiling

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Estimation of bioavailability and toxicity at the very beginning of the drug development process is one of the big challenges in drug discovery. Most of the processes involved in ADME are driven by rather unspecific interactions between drugs and biological macromolecules. Within the past decade, drug transport pumps such as P-glycoprotein (Pgp) have gained increasing interest in the early ADME profiling process. Due to the high structural diversity of ligands of Pgp, traditional QSAR methods were only successful within analogous series of compounds. We used an approach based on similarity calculations to predict Pgp-inhibitory activity of a series of propafenone analogues. This SIBAR approach is based on selection of a highly diverse reference compound set and calculation of similarity values to these reference compounds. The similarity values (denoted as SIBAR descriptors) are then used for PLS analysis. Our results show, that for a set of 131 propafenone type compounds, models with good predictivity were obtained both in cross validation procedures and with a 31-compound external test set. Thus, these new descriptors might be a versatile tool for generation of predictive ADME models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaliszan, R., Kaliszan, A. and Wainer, I.W., J. Pharm. Biomed. Anal., 11 (1993) 505.

    Google Scholar 

  2. Kansy, M., Senner, F. and Gubernator, K., J. Med. Chem., 41 (1998) 1007.

    Google Scholar 

  3. Sadowski, J. and Kubinyi, H., J. Med. Chem., 41 (1998) 3325.

    Google Scholar 

  4. Wagener, M. and van Geerestein, V. J., J. Chem. Inf. Comput. Sci., 40 (2000) 280.

    Google Scholar 

  5. Ertl, P., Rohde, B. and Selzer, P., J. Med. Chem., 43 (2000) 3714.

  6. Cruciani, G., Pastor, M. and Guba, W., Eur. J. Pharm. Sci., 11 (2000) Suppl 2 S29.

  7. Kubinyi, H., Hamprecht, F.A. and Mietzner, T., J. Med. Chem., 41 (1998) 2553.

    Google Scholar 

  8. Good, A.C. Peterson, S.J. and Richards, W.G., J.Med. Chem., 36 (1993) 2929.

    Google Scholar 

  9. Benigni, R., Cotta-Ramusino, M., Giorgi, F. and Gallo, G., J. Med. Chem., 38 (1995) 629.

    Google Scholar 

  10. Ghuloum, A.M., Sage, C.R. and Jain, A.N., J. Med. Chem., 42 (1999) 1739.

    Google Scholar 

  11. Ayrton, A. and Morgan, P., Xenobiotica, 31 (2001) 469.

  12. Gottesma,, M.M., Fojo, T. and Bates, S.E., Nature Rev. Cancer, 2 (2002) 48.

    Google Scholar 

  13. Teodori, E., Dei, S., Scapecchi, S. and Gualtieri, F., Farmaco, 57 (2002) 385.

  14. Ecker, G.F. and Chiba, P., Recent Res. Devel. Medicinal Chem., 1 (2001) 121.

    Google Scholar 

  15. Schmid, D., Ecker, G., Richter, E., Hitzler, M. and Chiba, P., Biochem. Pharmacol., 58 (1999) 1447.

    PubMed  Google Scholar 

  16. Chiba, P., Burghofer, S., Richter, E., Tell, B., Moser, A. and Ecker, G., J. Med. Chem., 38 (1995) 2789.

    PubMed  Google Scholar 

  17. Ecker, G., Chiba, P., Hitzler, M., Schmid, D., Visser, K., Cordes, H.P., Csoellei, J., Seydel, J.K. and Schaper, K.J., J. Med. Chem., 39 (1996) 4767.

    PubMed  Google Scholar 

  18. Salem, M., Richter, E., Hitzler, M., Chiba, P. and Ecker, G., Sci. Pharm., 66 (1998) 147.

    Google Scholar 

  19. Tmej, C., Chiba, P., Huber, M., Richter, E., Hitzler, M., Schaper, K.J. and Ecker, G., Arch. Pharm. Pharm. Med. Chem., 331 (1998) 233.

    Google Scholar 

  20. Ecker, G., Huber, M., Schmid, D. and Chiba, P., Mol. Pharmacol., 56 (1999) 791

    PubMed  Google Scholar 

  21. SYBYL 6.7, Tripos Inc., Munich (Germany) 2001

  22. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902

    Google Scholar 

  23. SPECS and BioSPECS B.V., Rijswijk, The Netherlands, 2001; http://www.specs.net

  24. UNITY 4.3, Tripos Inc., Munich (Germany) 2001

  25. Hall, L.H. and Kier, L.B., In Lipkowitz, K.B. and Boyd, D.B., (eds.) Reviews in Computational Chemistry Vol. 2, VCH Publishers, New York, NY, 1992, pp. 367–422.

    Google Scholar 

  26. Kier, L.B. and Hall, L.H., J. Chem. Inf. Comput. Sci., 31 (1991) 76.

    Google Scholar 

  27. Balaban, A.T., Chem. Phys. Lett., 89 (1982) 399.

    Google Scholar 

  28. TSAR 3.3, Oxford Molecular Ltd., The Medware Center, Oxford Science Park, Oxford 2000.

    Google Scholar 

  29. van de Waterbeemd, H., Drugs Fut., 27/ Suppl. A (2002) 12 (L10)

  30. Palm, K., Stenberg, P., Luthman, L., Artursson, P., Pharm. Res., 14 (1997) 568.

    PubMed  Google Scholar 

  31. Ecker, G.F., unpublished results

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, C., Kaiser, D., Kopp, S. et al. Similarity based SAR (SIBAR) as tool for early ADME profiling. J Comput Aided Mol Des 16, 785–793 (2002). https://doi.org/10.1023/A:1023828527638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023828527638

Navigation