Skip to main content
Log in

A structure-based design approach for the identification of novel inhibitors: application to an alanine racemase

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We report a new structure-based strategy for the identification of novel inhibitors. This approach has been applied to Bacillus stearothermophilus alanine racemase (AlaR), an enzyme implicated in the biosynthesis of the bacterial cell wall. The enzyme catalyzes the racemization of l- and d-alanine using pyridoxal 5′-phosphate (PLP) as a cofactor. The restriction of AlaR to bacteria and some fungi and the absolute requirement for d-alanine in peptidoglycan biosynthesis make alanine racemase a suitable target for drug design. Unfortunately, known inhibitors of alanine racemase are not specific and inhibit the activity of other PLP-dependent enzymes, leading to neurological and other side effects.

This article describes the development of a receptor-based pharmacophore model for AlaR, taking into account receptor flexibility (i.e. a `dynamic' pharmacophore model). In order to accomplish this, molecular dynamics (MD) simulations were performed on the full AlaR dimer from Bacillus stearothermophilus (PDB entry, 1sft) with a d-alanine molecule in one active site and the non-covalent inhibitor, propionate, in the second active site of this homodimer. The basic strategy followed in this study was to utilize conformations of the protein obtained during MD simulations to generate a dynamic pharmacophore model using the property mapping capability of the LigBuilder program. Compounds from the Available Chemicals Directory that fit the pharmacophore model were identified and have been submitted for experimental testing.

The approach described here can be used as a valuable tool for the design of novel inhibitors of other biomolecular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roe, D.C. and Kuntz, I.D., J. Comp. Aid. Mol. Des., 9 (1995) 269.

    Google Scholar 

  2. Böhm, H.-J., J. Comp. Aid. Mol. Des., 10 (1996) 265.

    Google Scholar 

  3. Kick, E.K., Roe, D.C., Skillman, A.G., Liu, G.C., Ewing, T.J.A., Sun, Y., Kuntz, I.D. and Ellman, J.A., Chem. Biol., 4 (1997) 297.

    Google Scholar 

  4. Klebe, G., J. Mol. Med. 78 (2000) 269.

    Google Scholar 

  5. Helmy, B., Scand. J. Respir. Dis. 71S (1970) 220.

    Google Scholar 

  6. Shaw, J.P., Petsko, G.A. and Ringe, D., Biochemistry 36 (1997) 1329.

    Google Scholar 

  7. Stamper, C.G.F., Morollo, A.A. and Ringe, D., Biochemistry 37 (1998) 10438.

    Google Scholar 

  8. Morollo, A.A., Petsko, G.A. and Ringe, D., Biochemistry 38 (1999) 3293.

    Google Scholar 

  9. Watanabe, A., Yoshimura, T., Mikami, B., Hayashi, H., Kagamiyama, H. and Esaki, N., J. Biol. Chem. (2002) in press.

  10. Carlson, H.A., Masukawa, K.M., Rubins, K., Bushman, F.D., Jorgensen, W.L., Lins, R.D., Briggs, J.M. and McCammon, J.A., J. Med. Chem. 43 (2000) 2100.

    Google Scholar 

  11. Jorgensen, W.L., BOSS Version 3.8 (1997), Yale University, New Haven, CT.

    Google Scholar 

  12. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P., Advanced Drug Delivery Reviews 23 (1997) 3.

    Google Scholar 

  13. Wang, R., Gao, Y. and Lai, L., J. Mol. Model. 6 (2000) 498.

    Google Scholar 

  14. ACD: Available Chemicals Directory; Version 2000, Accelrys Inc., http://www.accelrys.com.

  15. CATALYST, Accelrys Inc., San Diego, CA, http://www.accelrys.com.

  16. Strych, U., Benedik, M.J., J. Bact. 184, Vol. 1 (2002) 4321.

    Google Scholar 

  17. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. 102 (1998) 586.

    Google Scholar 

  18. Gaussian98, Gaussian, Inc., Pittsburgh, PA, 1998, http://www.gaussian.com.

  19. Antosiewicz, J., Briggs, J.M., Elcock, A.H., Gilson, M.K., McCammon, J.A., J. Comput. Chem. 17 (1996) 1633.

    Google Scholar 

  20. Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Lutty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R., and McCammon, J.A. Comp. Phys. Comm. 91 (1995) 57.

    Google Scholar 

  21. Ondrechen, M.J., Briggs, J.M. and McCammon, J.A., J. Am. Chem. Soc. 123 (2001) 2830.

    Google Scholar 

  22. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comp. Chem. 4 (1983) 187.

    Google Scholar 

  23. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K. and Schulten, K., J. Comput. Phys. 151 (1999) 283.

    Google Scholar 

  24. Berendsen, H.J.C., Postma, J.P.M., van Gusteren, N.F., Di Nola, A. and Haak, J.R., J. Chem. Phys. 81 (1984) 3684.

    Google Scholar 

  25. Jorgensen, W.L., Chandresekhar, J., Madura, J., Impey, R., Klein, M.J., Chem. Phys. 79 (1983) 926.

    Google Scholar 

  26. Ryckaert, J.P., Cicotti, G. and Berendsen, H.J.C., J. Comp. Phys. 23 (1977) 327.

    Google Scholar 

  27. Allen, M.P. and Tildesley, D.J., Computer Simulations of Liquids, Oxford University Press, New York, 1987.

    Google Scholar 

  28. SAS 8.1, SAS Institute Inc., Cary, NC 27513, USA, http://www.sas.com.

  29. Barnum, D., Greene, J., Smellie, A., Sprague, P., J. Chem. Inf. Comput. Sci. 36 (1996) 563.

    Google Scholar 

  30. Wang, R., Gao, Y. and Lai, L., Perspectives in Drug Discovery and Design 19 (2000) 47.

    Google Scholar 

  31. InsightII, Accelrys Inc., http://www.accelrys.com.

  32. Bondi, A., J. Phys. Chem 68 (1964) 441.

    Google Scholar 

  33. Smelie, A., Teig, S., Towbin, P., J. Comp. Chem. 16 (1995) 171.

    Google Scholar 

  34. Hansch, C., Bjorkroth, J.P. and Leo, A., J. Pharm. Sci. 76 (1987) 663.

    Google Scholar 

  35. Bozler, G. and Schmid, J, Martin, Y.C., Kutter, E. and Austel, V. (Eds.), Principles of Pharmacokinetics and Drug Metabolism, Modern Drug Research - Path to Better and Safer Drugs, Marcel Dekker, Inc., New York, NY, U.S.A., 1989, pp. 77-160.

    Google Scholar 

  36. Wang, E. and Walsh, C., Biochemistry 17 (1978) 1313.

    Google Scholar 

  37. Roze, U., Strominger, J.L., Mol. Pharmacol. 2 (1966) 92.

    Google Scholar 

  38. Neuhas, F.C., Gotlich, P.L., Shaw (Eds.), Antibiotics, vol. 1, Springer-Verlag, Heidelberg, Germany, 1967, pp. 40.

    Google Scholar 

  39. Hünenberger, P.H., Mark, A.E., van Gunsteren, W.F., J. Mol. Biol. 252 (1995) 492.

    Google Scholar 

  40. Stocker, U., Spiegel, K., van Gunsteren, W.F, J. Biomol. NMR 18 (2000) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustata, G.I., Briggs, J.M. A structure-based design approach for the identification of novel inhibitors: application to an alanine racemase. J Comput Aided Mol Des 16, 935–953 (2002). https://doi.org/10.1023/A:1023875514454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023875514454

Navigation