Skip to main content
Log in

Methodology of Concept Control Synthesis to Avoid Unmoving and Moving Obstacles

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The dynamic path generation problem of robots in environments with other unmoving and moving objects is considered. Generally, the problem is known in the literature as find path or robot motion planning. In this paper, we apply the behavioral cloning approach to design the robot controller. In behavioral cloning, the system learns from control traces of a human operator. The task for the given problem is to find a controller in the form of an explicit mathematical expression. Thus, machine learning programs to induce the operator's trajectories as a set of symbolic constraints are used. Then, mathematical induction to generalize the obtained equations in order to apply them in situ with an infinite number of obstacles is also used. A method to evaluate cloning success is proposed. The typical kind of noise is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Avnaim, F., Boissonnat, J. D., and Faverjon, B.: 1988, A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Philadephia, PA, April 1988.

  • Barbehenn, M., Chen, P., and Hutchinson, S.: 1994, Efficient hybrid planner in changing enviroments, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, San Diego, CA, May 1994.

  • Barbehenn, M. and Hutchinson, S.: 1993, Efficient search and hierarchical motion planning by dynamically maintaining single-source shortest paths trees, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Atlanta, GA, May 1993.

  • Barraquand, J., Langiois, B., and Latombe, J. C.: 1989, Numerical potentional field techniques for robot path planning. Technical Report STAN-CS-89-1285, Stanford.

  • Barraquand, J. and Latombe, J. C.: 1990, A Monte-Carlo algorithm for path planning with many degrees of freedom, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Cincinnati, OH 1990.

  • Barraquand, J. and Latombe, J. C.: 1991, Robot motion planning: A distributed representation approach, Internat. J. Robotics Res. 10.

  • Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: 1984, Classification and regression trees, Wadsworth Internat. Group, Belmont, CA, USA.

    Google Scholar 

  • Brooks, R. and Lozano-Perez, T.: 1983, A subdivision algorithm in configuration space for findpath with rotation, in: Proc. of Internat. Joint Conf. on Artificial Intelligence.

  • Canny, J. and Donald, B.: 1988, Simplified Voronoi diagrams, Discrete Comput. Geometry 3.

  • Chany, J. F.: 1988, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA.

    Google Scholar 

  • Chen, P.: 1992, Improving path planning with learning, in: Proc. of Machine Learning Conference, Aberdeen, Scotland.

  • Chen, P. and Hwang, Y.: 1991, Practical path planning among movable obstacles, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Sacremento, CA, April 1991.

  • Choset H. and Burdick, J.: 1995, Sensor based planning, part I: The generalized Voronoi graph, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Nagoya, Aichi, Japan, May 1995.

  • Erdmann, M. and Lozano-Perez, T.: 1986, On multiple robots, Technical Report 883, MIT AI Lab.

  • Faverjo, B. and Tournassound, P.: 1987, The mixed approach for path motion planning: Learning global strategies from a local planner, in: Proc. Internat. Joint Conf. on Artificial Intelligence, Milan, August 1987.

  • Fujimura, K. and Samet, H.: 1989, Hierarchical strategy for path planning among moving obstacles, IEEE Trans. Robotics Automat. (February).

  • Glavina, B., Solving findpath by combination of goal-directed and randomized search, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Cincinnati, OH.

  • Karalič, A.: 1991, Avtomatsko učenje regresijskih dreves iz nepopolnih podatkov, Magistarsko delo, Univerza v Ljubljani, Ljubljana.

    Google Scholar 

  • Kavraki, L.: 1994, Randomized preprocessing of configuration space for fast path planning, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, San Diego, CA, May 1994.

  • Khatib, O.: 1986, Real-time obstacle avoidance for manipulators and mobile robots, Internat. J. Robotics Res. 5.

  • Koditschek, D. E.: 1987, Exact robot navigation by means of potential functions: Some topological considerations, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Taleigh, NC.

  • Kriàman, V.: 1993, Obravnavanje šumnih podatkov pri avtomatskem modeliranju dinamičnih sistemov, Magistarsko delo, Univerza v Ljubljani, Ljubljana, 1993.

    Google Scholar 

  • Kulić, R.: 2001, Transfer of skill in obstacle avoiding domain, in: The 2th IFAC–CIGR Symposium, Bali, Indonesia, August 2001.

  • Kulić, R.: 2001, Behavioural cloning in obstacle avoiding, in: The 7th Internat. Symposium SAUM, Vrnjačka Banja, Yugoslavia, September 2001.

    Google Scholar 

  • Latombe, J. C.: 1991, Robot Motion Planning, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Leven, D. and Sharir, M.: 1985, An efficient and simple motion palnning algorithm for a ladder moving in two-dimensional space amidst polygonal barriers, in: Proc. 1st ACM Symposium on Computational Geometry.

  • Lozano-Perez, T. and Wesley, M.: 1979, An algorithm for planning collision-free paths among polyhedral obstacles, Commun. ACM 22(10).

  • Michie, D.: 1993, Knowledge, learning and machine intelligence, in: L. S. Sterling (ed.), Intelligent Systems, Plenum Press, New York.

    Google Scholar 

  • Michie, D. and Camacho, R.: 1994, Building symbolic representations of intuitive real-time skills from performance data, in: K. Furukawa and S. Muggleton (eds), Machine Intelligence and Inductive Learning, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Overmars, M. and Svetska, P.: 1994, A probabilistic learning approach to motion planning, in: Workshop on the Algorithmic Foundations of Robotics, San Francisco, CA, February 1994.

  • Quinlan, J. R.: 1986, Induction of decision trees, Machine Learning 1.

  • Reif, J. and Sharir M.: 1985, Motion planning in the presence of moving obstacles, in: Proc. of IEEE Symposium on the Foundations of Computer Science.

  • Reif, J.: 1987, Compexity of the generalized mover's problem, in: J. Schwartz, M. Sharir, and J. Hopcroft (eds), Planning, Geometry, and Compexity of Robot Motion, Ablex, Norwood, NJ.

  • Rimon, E. and Koditschek, D. E.: 1992, Exact robot navigation using artificial potentional functions, IEEE J. Robotics Automat. 8 (October) 1992.

  • Rimon, E. and Canny J.: 1994, Construction of C-space roadmaps from local sensory data, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, San Diego, CA, May 1994.

  • Sammut, C., Hurst, S., Kedzier, D. and Michie, D.: 1992, Learning to fly, in: D. Sleeman and P. Edwards (eds), Proc. of the 9st Internat. Workshop on Machine Learning, Morgan Kaufmann.

  • Schwartz, J. and Sharir, M.: 1987a, On the piano mover's problem: I. The case of a twodimensional rigid polygonal body moving amidst polygonal barriers, in: J. Schwartz, M. Sharir, and J. Hopcroft (eds), Planning, Geometry, and Compexity of Robot Motion, Ablex, Norwood, NJ.

  • Schwartz, J. and Sharir, M.: 1987b, On the piano mover's problem: II. General techniques for computing topological properties of real algebraic manifolds, in: J. Schwartz, M. Sharir, and J. Hopcroft (eds), Planning, Geometry, and Compexity of Robot Motion, Ablex, Norwood, NJ.

  • Schwartz, J., Sharir, M., and Hopcroft, J.: 1987, Planning, Geometry, and Compexity of Robot Motion, Ablex, Norwood, NJ.

  • Sifrony, S. and Sharir, M.: 1987, A new efficient motion-planning algorithm for a rod in twodimensional polygonal space, Algorithmica 2.

  • Stappen, F., Halperin, D., and Overmars, M.: 1993, The complexity of the free space for a robot moving amidst fat obstacles, Comput. Geometry 3.

  • Stojić, R., Kulić, R., and Živanović, M.: 1990, O upravljanju letom po zadatoj putanji, Naučno-Tehnički Pregled, Vol. XI(8/9), Beograd.

  • Wilfong, G.: 1988, Motion planning in the presence of movable obstacles, in: Proc. of the 4th ACM Symposium on Computational Geometry.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulić, R., Vukić, Z. Methodology of Concept Control Synthesis to Avoid Unmoving and Moving Obstacles. Journal of Intelligent and Robotic Systems 37, 21–41 (2003). https://doi.org/10.1023/A:1023926804240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023926804240

Navigation