Skip to main content
Log in

A DNA Computing-based Genetic Program for In Vitro Protein Evolution via Constrained Pseudomodule Shuffling

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

An in vitro domainal shuffling strategy for protein evolution was proposed in (J. Kolkman and W. Stemmer, Nat. Biotech. 19 (423) 2001). Due to backhybridization, however this method appears unlikely to be an efficient means of iteratively generating massive libraries of combinatorially shuffled genes. Recombination at the domain level (30–300 residues) also appears too coarse to support the evolution of proteins with substantially new folds. In this work, the module (10–25 residues long) and pseudomodule are adopted as the fundamental units of protein structure. Each protein is modelled as an N to C-terminal tour of a digraph composed of pseudomodules. An in vitro method based on PNA-mediated Whiplash PCR (PWPCR), RNA-protein fusion, and restriction-based recombination, XWPCR is then presented for evolving proteins with a high affinity for a given motif, subject to the constraint that each corresponds to a walk on the pseudomodule digraph of interest. Simulations predict that PWPCR is an efficient method of producing massive, shuffled gene libraries encoding for proteins as long as roughly 600 residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Adleman, “Molecular computation of solutions to combinatorial problems,” Science, vol. 266, pp. 1021-1024, 1994.

    Google Scholar 

  2. C. Anfinsen, “Principles that govern the folding of protein chains,” Science, vol. 181, pp. 223-230, 1973.

    Google Scholar 

  3. L. Bogarad and M. Deem, “A hierarchical approach to protein molecular evolution,” Proc. Natl. Acad. Sci. USA, vol. 96, pp. 2591-2595, 1999.

    Article  Google Scholar 

  4. C. Cantor and P. Schimmel, Biophysical Chemistry, Part I: The Conformation of Biological Macromolecules, W. H. Freeman: San Francisco, 1980.

    Google Scholar 

  5. C. Cantor and P. Schimmel, Biophysical Chemistry, Part III: The Behavior of Biological Macromolecules, W. H. Freeman: San Francisco, 1980.

    Google Scholar 

  6. S. de Souza et al., “Intron positions correlate with module boundaries in ancient proteins,” Proc. Natl. Acad. Sci. USA, vol. 93, pp. 14632-14636, 1996.

    Article  Google Scholar 

  7. R. Doolittle, “The multiplicity of domains in proteins,” Annu. Rev. Biochem., vol. 64, pp. 287-314, 1995.

    Article  Google Scholar 

  8. J. Ellman et al., “Biosynthetic method for introducing unnatural amino acids site-specifically into proteins,” Methods Enzymol., vol. 202, pp. 301-336, 1991.

    Article  Google Scholar 

  9. W. Gilbert, “Why genes in pieces?,” Nature, vol. 271, p. 501, 1978.

    Article  Google Scholar 

  10. C. Giovannangeli and C. Helene, “Triplex-forming molecules for modulation of DNA information processing,” Curr. Opin. Molec. Ther., vol. 2, pp. 288-296, 2000.

    Google Scholar 

  11. M. Go, “Correlation of DNA exonic regions with protein structural units in Haemoglobin,” Nature, vol. 291, pp. 90-92, 1981.

    Article  Google Scholar 

  12. M. Go and M. Nosaka, “Protein architecture and the origin of introns,” Cold Spring Harbor Symp. Quant. Biol., vol. 52, pp. 915-924, 1987.

    Google Scholar 

  13. A. Griffiths and D. Tawfik, “Man-made enzymes-from design to in vitro compartmentalisation,” Curr. Opin. Biotech., vol. 11, pp. 338-353, 2000.

    Article  Google Scholar 

  14. K. Inaba et al., “Structural and functional roles of modules in hemoglobin,” J. Biol. Chem., vol. 272, pp. 30054-30060, 1998.

    Article  Google Scholar 

  15. K. Inaba et al., “Structural and functional effects of pseudo-module substitution in hemoglobin subunits,” J. Biol. Chem., vol. 273, pp. 8080-8087, 1998.

    Article  Google Scholar 

  16. P. Kaplan et al., “Parallel overlap assembly for the construction of computational DNA libraries,” J. Theor. Biol., vol. 188, pp. 333-341, 1997.

    Article  Google Scholar 

  17. J. Kolkman and W. Stemmer, “Directed evolution of proteins by exon shuffling,” Nat. Biotech., vol. 19, pp. 423-428, 2001.

    Article  Google Scholar 

  18. M. Kozak, “Comparison of the initiation of protein synthesis in prokaryotes, eukaryotes, and organelles,” Microbiol. Rev., vol. 47, pp. 1-45, 1983.

    Google Scholar 

  19. H. Kuhn et al., “Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA,” Nuc. Acids Res., vol. 26, pp. 582-587, 1998.

    Article  Google Scholar 

  20. R. Liu et al., “Optimized synthesis of RNA-Protein fusions for in vitro protein selection,” Methods Enzymol., vol. 318, pp. 268-293, 2000.

    Google Scholar 

  21. J. Milligan and O. Uhlenbeck, “Synthesis of small RNAs using T7 RNA polymerase,” Methods Enzymol., vol. 180, pp. 51-62, 1989.

    Google Scholar 

  22. N. Nemoto et al., “In vitro virus: Bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro,” FEBS Lett., vol. 414, pp. 405-408, 1997.

    Article  Google Scholar 

  23. M. Oobatake and T. Ooi, “Hydration and heat stability effects on protein unfolding,” Prog. Biophys. Molec. Biol., vol. 59, pp. 237-284, 1993.

    Article  Google Scholar 

  24. P. Peyret et al., “Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C and T·T mismatches,” Biochemistry, vol. 38, pp. 3468-3477, 1999.

    Article  Google Scholar 

  25. REBase restriction enzyme database, http://rebase.neb.com.

  26. R. Roberts, and J. Szostak, “RNA-Peptide fusions for the in vitro selection of peptides and proteins,” Proc. Natl. Acad. Sci., vol. 94, pp. 12297-12302, 1997.

    Article  Google Scholar 

  27. J. Rose, The Fidelity of DNA Computation, Ph.D. Thesis, The University of Memphis (R. Deaton, Major advisor), 1999.

  28. J. Rose, R. Deaton, M. Hagiya, and A. Suyama, “Equilibrium analysis of the efficiency of an autonomous molecular computer,” Phys. Rev. E. 65, Article 021910, pp. 1-13, 2002.

    Article  Google Scholar 

  29. J. Rose, M. Hagiya, R. Deaton, and A. Suyama, “A DNA-based in vitro genetic program,” J. Biol. Phys., vol. 28, pp. 493-498, 2002.

    Article  Google Scholar 

  30. J. Rose, M. Takano, and A. Suyama, “A PNA-mediated Whiplash PCR-based Program for in vitro protein evolution,” in Proc. of the 8th Int'l Conference on DNA Based Computers, M. Hagiya and A. Ohuchi (eds.), 2002, pp. 5-18.

  31. K. Sakamoto et al., “State transitions by molecules,” Biosystems, vol. 52, pp. 81-91, 1999.

    Article  Google Scholar 

  32. J. Sambrook, E. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual 3rd Cold Spring Harbor Press: Cold Spring Harbor, NY, 2001.

    Google Scholar 

  33. W. Stemmer, “Rapid evolution of a protein in vitro by DNA shuffling,” Nature, vol. 370, pp. 389-391, 1994.

    Article  Google Scholar 

  34. K. Yura and M. Go, “Helix-turn-helix module distribution and module shuffling,” 3rd Ed., Tracing Biological Evolution in Protein and Gene Structures, M. Go and P. Schimmel (eds.), Elsevier: Amsterdam, 1995, pp. 187-196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, J.A., Takano, M., Hagiya, M. et al. A DNA Computing-based Genetic Program for In Vitro Protein Evolution via Constrained Pseudomodule Shuffling. Genet Program Evolvable Mach 4, 139–152 (2003). https://doi.org/10.1023/A:1023932912559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023932912559

Keywords

Navigation