Skip to main content
Log in

Upper Bound of the Constant in Strengthened C.B.S. Inequality for Systems of Linear Partial Differential Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The constant γ in the strengthened Cauchy–Bunyakowski–Schwarz (C.B.S.) inequality plays a crucial role in the convergence rate of multilevel iterative methods as well as in the efficiency of a posteriori error estimators, that is the framework of finite element approximations of systems of partial differential equations. We consider an approximation of general systems of linear partial differential equations in R 3. Concerning a multilevel convergence rate corresponding to nested general tetrahedral meshes of size h and 2h, we give an estimate of this constant for general three-dimensional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Achchab, Estimations d'erreur a posteriori, éléments finis mixtes hiérarchiques, méthodes de stabilisation et méthodes multiniveaux, Thèse de doctorat, Université Claude Bernard-Lyon 1 (1995).

  2. B. Achchab, Estimateurs d'erreur a posteriori, éléments finis mixtes, hybrides et anisotropes. Méthodes de décomposition de domaines et méthodes multiniveaux. Application à la résolution numérique performante des équations aux dérivées partielles, Habilitation universitaire, LERMA, EMI-Rabat (2002).

    Google Scholar 

  3. B. Achchab and A. Agouzal, Formulations mixtes augmentées. Applications, Math. Modelling Numer. Anal. 33(3) (1999) 459–478.

    Google Scholar 

  4. B. Achchab, A. Agouzal, J. Baranger and J.F. Maitre, Estimations d'erreur a posteriori en éléments finis hiérarchique. Application aux éléments finis mixtes, Numer Math. 80 (1998) 159–179.

    Google Scholar 

  5. B. Achchab, O. Axelsson, A. Laayouni and A. Souissi, Strengthened Cauchy–Bunyakowski–Schwarz inequality for a three-dimensional elasticity system, Numer. Linear Algebra Appl. 8(3) (2001) 191–205.

    Google Scholar 

  6. B. Achchab, O. Axelsson, A. Laayouni and A. Souissi, A preconditioning method for systems of linear partial differential equations (submitted).

  7. B. Achchab and J.F. Maitre, Estimate of the constant in two strengthened C.B.S inequalities for F.E.M systems of 2D elasticity. Application to multilevel methods and a posteriori error estimators, Numer. Linear Algebra Appl. 3(2) (1996) 147–159.

    Google Scholar 

  8. O. Axelsson, On multigrid methods of the two-level type, in: Multigrid Methods, Proceedings, Köln-Porz, 1981, eds.W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982) pp. 352–367.

    Google Scholar 

  9. O. Axelsson, Stabilization of algebraic multilevel iteration methods; additive methods, Numer. Algorithms 21 (1999) 23–47.

    Google Scholar 

  10. O. Axelsson and V.A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Computation (Academic Press, Orlando, 1984).

    Google Scholar 

  11. O. Axelsson and R. Blaheta, Two simple derivations of universal bounds for the C.B.S. inequality constant (to appear).

  12. O. Axelsson and I. Gustafsson, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comp. 40 (1983) 219–242.

    Google Scholar 

  13. O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods I, Numer. Math. 56 (1989) 157–177.

    Google Scholar 

  14. O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods II, SIAM J. Numer. Anal. 67 (1990) 1569–1590.

    Google Scholar 

  15. O. Axelsson and P. Vassilevski, A survey of a class of algebraic multilevel iteration methods for positive definite symmetric matrices, in: Numerical Mathematics and Advanced Application, eds. P. Neittaanmäki, T. Tiihonen and P. Tarvainen (Worlds Scientific, Singapore, 2000) pp. 16–30.

    Google Scholar 

  16. R. Bank and T. Dupont, Analysis of a two-level scheme for solving finite element equations, Technical Report CNA-159, Center for Numerical Analysis, Unversity of Texas, Austin, TX (1980).

    Google Scholar 

  17. R. Bank, T. Dupont and H. Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988) 427–458.

    Google Scholar 

  18. R.E. Bank and R.K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993) 921–935.

    Google Scholar 

  19. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.

    Google Scholar 

  20. J. Bey, Tetrahedral grid refinement, Computing 55 (1995) 355–378.

    Google Scholar 

  21. D. Braess, The condition number of a multigrid method for solving the Poisson equation, Numer. Math. 37 (1981) 387–404.

    Google Scholar 

  22. D. Braess, The convergence rate of a multigrid method with Gauss–Seidel relaxation for the Poisson equation, in: Multigrid Methods, Proceedings, Köln-Porz, 1981, eds. W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982) pp. 368–387.

    Google Scholar 

  23. J.H. Bramble, R.E. Ewing, J.E. Pasciak and A.H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech. Engrg. 67 (1988) 149–159.

    Google Scholar 

  24. V. Eijkhout and P. Vassilevski, The role of the strengthened Cauchy–Bunyakowski–Schwarz inequality in multilevel methods, SIAM Rev. 33 (1991) 405–419.

    Google Scholar 

  25. M. Jung and J.F. Maitre, Some remarks on the constant in the strengthened CBS inequality: Estimate for hierarchical finite element discretization of elasticity problems, Numer. Methods Partial Differential Equations 15(4) (1999) 469–488.

    Google Scholar 

  26. J.F. Maitre and F. Musy, The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems, in: Multigrid methods, Proceedings, Köln-Porz, 1981, eds.W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982) pp. 535–544.

    Google Scholar 

  27. S.D. Margenov, Upper bound of the constant in the strengthened C.B.S inequality for FEM 2D elasticity equations, Numer. Linear Algebra Appl. 1(1) (1994) 65–74.

    Google Scholar 

  28. S. McCormick, Fast adaptive composite grid (FAC)methods: Theory for the variational case, Comput. Suppl. 5 (1984) 115–121.

    Google Scholar 

  29. O. Meg, Hierarchical basis preconditioners for second order elliptic problems in three dimensions, Technical Report No. 89-3, Department of Applied Mathematics, University of Washington (1989).

  30. P. Vassilevski, Nearly optimal iterative methods for solving finite element elliptic equations based on the multilevel splitting of the matrix, Technical Report 1989/1990, Institute for Scientific Computing, University of Wyoming, Laramie, WY (1989).

    Google Scholar 

  31. H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achchab, B., Achchab, S., Axelsson, O. et al. Upper Bound of the Constant in Strengthened C.B.S. Inequality for Systems of Linear Partial Differential Equations. Numerical Algorithms 32, 185–191 (2003). https://doi.org/10.1023/A:1024058625449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024058625449

Navigation